Ruby 2.7.7p221 (2022-11-24 revision 168ec2b1e5ad0e4688e963d9de019557c78feed9)
sha2.c
Go to the documentation of this file.
1/*
2 * FILE: sha2.c
3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $OrigId: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
33 * $RoughId: sha2.c,v 1.3 2002/02/26 22:03:36 knu Exp $
34 * $Id$
35 */
36
37#include "../defs.h"
38#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
39#include <assert.h> /* assert() */
40#include "sha2.h"
41
42/*
43 * ASSERT NOTE:
44 * Some sanity checking code is included using assert(). On my FreeBSD
45 * system, this additional code can be removed by compiling with NDEBUG
46 * defined. Check your own systems manpage on assert() to see how to
47 * compile WITHOUT the sanity checking code on your system.
48 *
49 * UNROLLED TRANSFORM LOOP NOTE:
50 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
51 * loop version for the hash transform rounds (defined using macros
52 * later in this file). Either define on the command line, for example:
53 *
54 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
55 *
56 * or define below:
57 *
58 * #define SHA2_UNROLL_TRANSFORM
59 *
60 */
61
62
63/*** SHA-256/384/512 Machine Architecture Definitions *****************/
64/*
65 * BYTE_ORDER NOTE:
66 *
67 * Please make sure that your system defines BYTE_ORDER. If your
68 * architecture is little-endian, make sure it also defines
69 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
70 * equivalent.
71 *
72 * If your system does not define the above, then you can do so by
73 * hand like this:
74 *
75 * #define LITTLE_ENDIAN 1234
76 * #define BIG_ENDIAN 4321
77 *
78 * And for little-endian machines, add:
79 *
80 * #define BYTE_ORDER LITTLE_ENDIAN
81 *
82 * Or for big-endian machines:
83 *
84 * #define BYTE_ORDER BIG_ENDIAN
85 *
86 * The FreeBSD machine this was written on defines BYTE_ORDER
87 * appropriately by including <sys/types.h> (which in turn includes
88 * <machine/endian.h> where the appropriate definitions are actually
89 * made).
90 */
91#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
92#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
93#endif
94
95/*
96 * Define the followingsha2_* types to types of the correct length on
97 * the native archtecture. Most BSD systems and Linux define u_intXX_t
98 * types. Machines with very recent ANSI C headers, can use the
99 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
100 * during compile or in the sha.h header file.
101 *
102 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
103 * will need to define these three typedefs below (and the appropriate
104 * ones in sha.h too) by hand according to their system architecture.
105 *
106 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
107 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
108 */
109#ifdef SHA2_USE_INTTYPES_H
110
111typedef uint8_t sha2_byte; /* Exactly 1 byte */
112typedef uint32_t sha2_word32; /* Exactly 4 bytes */
113typedef uint64_t sha2_word64; /* Exactly 8 bytes */
114
115#else /* SHA2_USE_INTTYPES_H */
116
117typedef u_int8_t sha2_byte; /* Exactly 1 byte */
118typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
119typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
120
121#endif /* SHA2_USE_INTTYPES_H */
122
123
124/*** SHA-256/384/512 Various Length Definitions ***********************/
125/* NOTE: Most of these are in sha2.h */
126#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
127#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
128#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
129
130
131#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || defined(__GNUC__) || defined(_HPUX_SOURCE) || defined(__IBMC__)
132#define ULL(number) number##ULL
133#else
134#define ULL(number) (uint64_t)(number)
135#endif
136/*** ENDIAN REVERSAL MACROS *******************************************/
137#if BYTE_ORDER == LITTLE_ENDIAN
138#define REVERSE32(w,x) { \
139 sha2_word32 tmp = (w); \
140 tmp = (tmp >> 16) | (tmp << 16); \
141 (x) = ((tmp & (sha2_word32)0xff00ff00UL) >> 8) | ((tmp & (sha2_word32)0x00ff00ffUL) << 8); \
142}
143#define REVERSE64(w,x) { \
144 sha2_word64 tmp = (w); \
145 tmp = (tmp >> 32) | (tmp << 32); \
146 tmp = ((tmp & ULL(0xff00ff00ff00ff00)) >> 8) | \
147 ((tmp & ULL(0x00ff00ff00ff00ff)) << 8); \
148 (x) = ((tmp & ULL(0xffff0000ffff0000)) >> 16) | \
149 ((tmp & ULL(0x0000ffff0000ffff)) << 16); \
150}
151#endif /* BYTE_ORDER == LITTLE_ENDIAN */
152
153/*
154 * Macro for incrementally adding the unsigned 64-bit integer n to the
155 * unsigned 128-bit integer (represented using a two-element array of
156 * 64-bit words):
157 */
158#define ADDINC128(w,n) { \
159 (w)[0] += (sha2_word64)(n); \
160 if ((w)[0] < (n)) { \
161 (w)[1]++; \
162 } \
163}
164
165/*
166 * Macros for copying blocks of memory and for zeroing out ranges
167 * of memory. Using these macros makes it easy to switch from
168 * using memset()/memcpy() and using bzero()/bcopy().
169 *
170 * Please define either SHA2_USE_MEMSET_MEMCPY or define
171 * SHA2_USE_BZERO_BCOPY depending on which function set you
172 * choose to use:
173 */
174#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
175/* Default to memset()/memcpy() if no option is specified */
176#define SHA2_USE_MEMSET_MEMCPY 1
177#endif
178#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
179/* Abort with an error if BOTH options are defined */
180#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
181#endif
182
183#ifdef SHA2_USE_MEMSET_MEMCPY
184#define MEMSET_BZERO(p,l) memset((p), 0, (l))
185#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
186#endif
187#ifdef SHA2_USE_BZERO_BCOPY
188#define MEMSET_BZERO(p,l) bzero((p), (l))
189#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
190#endif
191
192
193/*** THE SIX LOGICAL FUNCTIONS ****************************************/
194/*
195 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
196 *
197 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
198 * S is a ROTATION) because the SHA-256/384/512 description document
199 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
200 * same "backwards" definition.
201 */
202/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
203#define R(b,x) ((x) >> (b))
204/* 32-bit Rotate-right (used in SHA-256): */
205#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
206/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
207#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
208
209/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
210#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
211#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
212
213/* Four of six logical functions used in SHA-256: */
214#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
215#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
216#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
217#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
218
219/* Four of six logical functions used in SHA-384 and SHA-512: */
220#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
221#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
222#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
223#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
224
225/*** INTERNAL FUNCTION PROTOTYPES *************************************/
226/* NOTE: These should not be accessed directly from outside this
227 * library -- they are intended for private internal visibility/use
228 * only.
229 */
233
234
235/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
236/* Hash constant words K for SHA-256: */
237static const sha2_word32 K256[64] = {
238 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
239 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
240 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
241 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
242 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
243 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
244 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
245 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
246 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
247 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
248 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
249 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
250 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
251 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
252 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
253 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
254};
255
256/* Initial hash value H for SHA-256: */
257static const sha2_word32 sha256_initial_hash_value[8] = {
258 0x6a09e667UL,
259 0xbb67ae85UL,
260 0x3c6ef372UL,
261 0xa54ff53aUL,
262 0x510e527fUL,
263 0x9b05688cUL,
264 0x1f83d9abUL,
265 0x5be0cd19UL
266};
267
268/* Hash constant words K for SHA-384 and SHA-512: */
269static const sha2_word64 K512[80] = {
270 ULL(0x428a2f98d728ae22), ULL(0x7137449123ef65cd),
271 ULL(0xb5c0fbcfec4d3b2f), ULL(0xe9b5dba58189dbbc),
272 ULL(0x3956c25bf348b538), ULL(0x59f111f1b605d019),
273 ULL(0x923f82a4af194f9b), ULL(0xab1c5ed5da6d8118),
274 ULL(0xd807aa98a3030242), ULL(0x12835b0145706fbe),
275 ULL(0x243185be4ee4b28c), ULL(0x550c7dc3d5ffb4e2),
276 ULL(0x72be5d74f27b896f), ULL(0x80deb1fe3b1696b1),
277 ULL(0x9bdc06a725c71235), ULL(0xc19bf174cf692694),
278 ULL(0xe49b69c19ef14ad2), ULL(0xefbe4786384f25e3),
279 ULL(0x0fc19dc68b8cd5b5), ULL(0x240ca1cc77ac9c65),
280 ULL(0x2de92c6f592b0275), ULL(0x4a7484aa6ea6e483),
281 ULL(0x5cb0a9dcbd41fbd4), ULL(0x76f988da831153b5),
282 ULL(0x983e5152ee66dfab), ULL(0xa831c66d2db43210),
283 ULL(0xb00327c898fb213f), ULL(0xbf597fc7beef0ee4),
284 ULL(0xc6e00bf33da88fc2), ULL(0xd5a79147930aa725),
285 ULL(0x06ca6351e003826f), ULL(0x142929670a0e6e70),
286 ULL(0x27b70a8546d22ffc), ULL(0x2e1b21385c26c926),
287 ULL(0x4d2c6dfc5ac42aed), ULL(0x53380d139d95b3df),
288 ULL(0x650a73548baf63de), ULL(0x766a0abb3c77b2a8),
289 ULL(0x81c2c92e47edaee6), ULL(0x92722c851482353b),
290 ULL(0xa2bfe8a14cf10364), ULL(0xa81a664bbc423001),
291 ULL(0xc24b8b70d0f89791), ULL(0xc76c51a30654be30),
292 ULL(0xd192e819d6ef5218), ULL(0xd69906245565a910),
293 ULL(0xf40e35855771202a), ULL(0x106aa07032bbd1b8),
294 ULL(0x19a4c116b8d2d0c8), ULL(0x1e376c085141ab53),
295 ULL(0x2748774cdf8eeb99), ULL(0x34b0bcb5e19b48a8),
296 ULL(0x391c0cb3c5c95a63), ULL(0x4ed8aa4ae3418acb),
297 ULL(0x5b9cca4f7763e373), ULL(0x682e6ff3d6b2b8a3),
298 ULL(0x748f82ee5defb2fc), ULL(0x78a5636f43172f60),
299 ULL(0x84c87814a1f0ab72), ULL(0x8cc702081a6439ec),
300 ULL(0x90befffa23631e28), ULL(0xa4506cebde82bde9),
301 ULL(0xbef9a3f7b2c67915), ULL(0xc67178f2e372532b),
302 ULL(0xca273eceea26619c), ULL(0xd186b8c721c0c207),
303 ULL(0xeada7dd6cde0eb1e), ULL(0xf57d4f7fee6ed178),
304 ULL(0x06f067aa72176fba), ULL(0x0a637dc5a2c898a6),
305 ULL(0x113f9804bef90dae), ULL(0x1b710b35131c471b),
306 ULL(0x28db77f523047d84), ULL(0x32caab7b40c72493),
307 ULL(0x3c9ebe0a15c9bebc), ULL(0x431d67c49c100d4c),
308 ULL(0x4cc5d4becb3e42b6), ULL(0x597f299cfc657e2a),
309 ULL(0x5fcb6fab3ad6faec), ULL(0x6c44198c4a475817)
310};
311
312/* Initial hash value H for SHA-384 */
313static const sha2_word64 sha384_initial_hash_value[8] = {
314 ULL(0xcbbb9d5dc1059ed8),
315 ULL(0x629a292a367cd507),
316 ULL(0x9159015a3070dd17),
317 ULL(0x152fecd8f70e5939),
318 ULL(0x67332667ffc00b31),
319 ULL(0x8eb44a8768581511),
320 ULL(0xdb0c2e0d64f98fa7),
321 ULL(0x47b5481dbefa4fa4)
322};
323
324/* Initial hash value H for SHA-512 */
325static const sha2_word64 sha512_initial_hash_value[8] = {
326 ULL(0x6a09e667f3bcc908),
327 ULL(0xbb67ae8584caa73b),
328 ULL(0x3c6ef372fe94f82b),
329 ULL(0xa54ff53a5f1d36f1),
330 ULL(0x510e527fade682d1),
331 ULL(0x9b05688c2b3e6c1f),
332 ULL(0x1f83d9abfb41bd6b),
333 ULL(0x5be0cd19137e2179)
334};
335
336/*
337 * Constant used by SHA256/384/512_End() functions for converting the
338 * digest to a readable hexadecimal character string:
339 */
340static const char *sha2_hex_digits = "0123456789abcdef";
341
342
343/*** SHA-256: *********************************************************/
344int SHA256_Init(SHA256_CTX* context) {
345 if (context == (SHA256_CTX*)0) {
346 return 0;
347 }
348 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
350 context->bitcount = 0;
351 return 1;
352}
353
354#ifdef SHA2_UNROLL_TRANSFORM
355
356/* Unrolled SHA-256 round macros: */
357
358#if BYTE_ORDER == LITTLE_ENDIAN
359
360#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
361 REVERSE32(*data++, W256[j]); \
362 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
363 K256[j] + W256[j]; \
364 (d) += T1; \
365 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
366 j++
367
368
369#else /* BYTE_ORDER == LITTLE_ENDIAN */
370
371#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
372 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
373 K256[j] + (W256[j] = *data++); \
374 (d) += T1; \
375 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
376 j++
377
378#endif /* BYTE_ORDER == LITTLE_ENDIAN */
379
380#define ROUND256(a,b,c,d,e,f,g,h) \
381 s0 = W256[(j+1)&0x0f]; \
382 s0 = sigma0_256(s0); \
383 s1 = W256[(j+14)&0x0f]; \
384 s1 = sigma1_256(s1); \
385 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
386 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
387 (d) += T1; \
388 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
389 j++
390
391void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
392 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
393 sha2_word32 T1, *W256;
394 int j;
395
396 W256 = (sha2_word32*)context->buffer;
397
398 /* Initialize registers with the prev. intermediate value */
399 a = context->state[0];
400 b = context->state[1];
401 c = context->state[2];
402 d = context->state[3];
403 e = context->state[4];
404 f = context->state[5];
405 g = context->state[6];
406 h = context->state[7];
407
408 j = 0;
409 do {
410 /* Rounds 0 to 15 (unrolled): */
411 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
412 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
413 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
414 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
415 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
416 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
417 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
418 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
419 } while (j < 16);
420
421 /* Now for the remaining rounds to 64: */
422 do {
423 ROUND256(a,b,c,d,e,f,g,h);
424 ROUND256(h,a,b,c,d,e,f,g);
425 ROUND256(g,h,a,b,c,d,e,f);
426 ROUND256(f,g,h,a,b,c,d,e);
427 ROUND256(e,f,g,h,a,b,c,d);
428 ROUND256(d,e,f,g,h,a,b,c);
429 ROUND256(c,d,e,f,g,h,a,b);
430 ROUND256(b,c,d,e,f,g,h,a);
431 } while (j < 64);
432
433 /* Compute the current intermediate hash value */
434 context->state[0] += a;
435 context->state[1] += b;
436 context->state[2] += c;
437 context->state[3] += d;
438 context->state[4] += e;
439 context->state[5] += f;
440 context->state[6] += g;
441 context->state[7] += h;
442
443 /* Clean up */
444 a = b = c = d = e = f = g = h = T1 = 0;
445}
446
447#else /* SHA2_UNROLL_TRANSFORM */
448
449void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
450 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
451 sha2_word32 T1, T2, *W256;
452 int j;
453
454 W256 = (sha2_word32*)context->buffer;
455
456 /* Initialize registers with the prev. intermediate value */
457 a = context->state[0];
458 b = context->state[1];
459 c = context->state[2];
460 d = context->state[3];
461 e = context->state[4];
462 f = context->state[5];
463 g = context->state[6];
464 h = context->state[7];
465
466 j = 0;
467 do {
469 /* Copy data while converting to host byte order */
470 REVERSE32(*data++,W256[j]);
471 /* Apply the SHA-256 compression function to update a..h */
472 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
473#else /* BYTE_ORDER == LITTLE_ENDIAN */
474 /* Apply the SHA-256 compression function to update a..h with copy */
475 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
476#endif /* BYTE_ORDER == LITTLE_ENDIAN */
477 T2 = Sigma0_256(a) + Maj(a, b, c);
478 h = g;
479 g = f;
480 f = e;
481 e = d + T1;
482 d = c;
483 c = b;
484 b = a;
485 a = T1 + T2;
486
487 j++;
488 } while (j < 16);
489
490 do {
491 /* Part of the message block expansion: */
492 s0 = W256[(j+1)&0x0f];
493 s0 = sigma0_256(s0);
494 s1 = W256[(j+14)&0x0f];
495 s1 = sigma1_256(s1);
496
497 /* Apply the SHA-256 compression function to update a..h */
498 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
499 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
500 T2 = Sigma0_256(a) + Maj(a, b, c);
501 h = g;
502 g = f;
503 f = e;
504 e = d + T1;
505 d = c;
506 c = b;
507 b = a;
508 a = T1 + T2;
509
510 j++;
511 } while (j < 64);
512
513 /* Compute the current intermediate hash value */
514 context->state[0] += a;
515 context->state[1] += b;
516 context->state[2] += c;
517 context->state[3] += d;
518 context->state[4] += e;
519 context->state[5] += f;
520 context->state[6] += g;
521 context->state[7] += h;
522
523 /* Clean up */
524 a = b = c = d = e = f = g = h = T1 = T2 = 0;
525}
526
527#endif /* SHA2_UNROLL_TRANSFORM */
528
529void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
530 unsigned int freespace, usedspace;
531
532 if (len == 0) {
533 /* Calling with no data is valid - we do nothing */
534 return;
535 }
536
537 /* Sanity check: */
538 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
539
540 usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
541 if (usedspace > 0) {
542 /* Calculate how much free space is available in the buffer */
543 freespace = SHA256_BLOCK_LENGTH - usedspace;
544
545 if (len >= freespace) {
546 /* Fill the buffer completely and process it */
547 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
548 context->bitcount += freespace << 3;
549 len -= freespace;
550 data += freespace;
551 SHA256_Transform(context, (sha2_word32*)context->buffer);
552 } else {
553 /* The buffer is not yet full */
554 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
555 context->bitcount += len << 3;
556 /* Clean up: */
557 usedspace = freespace = 0;
558 return;
559 }
560 }
561 while (len >= SHA256_BLOCK_LENGTH) {
562 /* Process as many complete blocks as we can */
563 MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
564 SHA256_Transform(context, (sha2_word32*)context->buffer);
565 context->bitcount += SHA256_BLOCK_LENGTH << 3;
567 data += SHA256_BLOCK_LENGTH;
568 }
569 if (len > 0) {
570 /* There's left-overs, so save 'em */
571 MEMCPY_BCOPY(context->buffer, data, len);
572 context->bitcount += len << 3;
573 }
574 /* Clean up: */
575 usedspace = freespace = 0;
576}
577
578int SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
579 sha2_word32 *d = (sha2_word32*)digest;
580 unsigned int usedspace;
581
582 /* Sanity check: */
583 assert(context != (SHA256_CTX*)0);
584
585 /* If no digest buffer is passed, we don't bother doing this: */
586 if (digest != (sha2_byte*)0) {
587 usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
588#if BYTE_ORDER == LITTLE_ENDIAN
589 /* Convert FROM host byte order */
590 REVERSE64(context->bitcount,context->bitcount);
591#endif
592 if (usedspace > 0) {
593 /* Begin padding with a 1 bit: */
594 context->buffer[usedspace++] = 0x80;
595
596 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
597 /* Set-up for the last transform: */
598 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
599 } else {
600 if (usedspace < SHA256_BLOCK_LENGTH) {
601 MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
602 }
603 /* Do second-to-last transform: */
604 SHA256_Transform(context, (sha2_word32*)context->buffer);
605
606 /* And set-up for the last transform: */
608 }
609 } else {
610 /* Set-up for the last transform: */
612
613 /* Begin padding with a 1 bit: */
614 *context->buffer = 0x80;
615 }
616 /* Set the bit count: */
618 sizeof(sha2_word64));
619
620 /* Final transform: */
621 SHA256_Transform(context, (sha2_word32*)context->buffer);
622
623#if BYTE_ORDER == LITTLE_ENDIAN
624 {
625 /* Convert TO host byte order */
626 int j;
627 for (j = 0; j < 8; j++) {
628 REVERSE32(context->state[j],context->state[j]);
629 *d++ = context->state[j];
630 }
631 }
632#else
634#endif
635 }
636
637 /* Clean up state data: */
638 MEMSET_BZERO(context, sizeof(*context));
639 usedspace = 0;
640 return 1;
641}
642
643char *SHA256_End(SHA256_CTX* context, char buffer[]) {
644 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
645 int i;
646
647 /* Sanity check: */
648 assert(context != (SHA256_CTX*)0);
649
650 if (buffer != (char*)0) {
651 SHA256_Final(digest, context);
652 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
653 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
654 *buffer++ = sha2_hex_digits[*d & 0x0f];
655 d++;
656 }
657 *buffer = (char)0;
658 } else {
659 MEMSET_BZERO(context, sizeof(*context));
660 }
662 return buffer;
663}
664
665char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
666 SHA256_CTX context;
667
668 SHA256_Init(&context);
669 SHA256_Update(&context, data, len);
670 return SHA256_End(&context, digest);
671}
672
673
674/*** SHA-512: *********************************************************/
675int SHA512_Init(SHA512_CTX* context) {
676 if (context == (SHA512_CTX*)0) {
677 return 0;
678 }
679 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
681 context->bitcount[0] = context->bitcount[1] = 0;
682 return 1;
683}
684
685#ifdef SHA2_UNROLL_TRANSFORM
686
687/* Unrolled SHA-512 round macros: */
688#if BYTE_ORDER == LITTLE_ENDIAN
689
690#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
691 REVERSE64(*data++, W512[j]); \
692 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
693 K512[j] + W512[j]; \
694 (d) += T1, \
695 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
696 j++
697
698
699#else /* BYTE_ORDER == LITTLE_ENDIAN */
700
701#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
702 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
703 K512[j] + (W512[j] = *data++); \
704 (d) += T1; \
705 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
706 j++
707
708#endif /* BYTE_ORDER == LITTLE_ENDIAN */
709
710#define ROUND512(a,b,c,d,e,f,g,h) \
711 s0 = W512[(j+1)&0x0f]; \
712 s0 = sigma0_512(s0); \
713 s1 = W512[(j+14)&0x0f]; \
714 s1 = sigma1_512(s1); \
715 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
716 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
717 (d) += T1; \
718 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
719 j++
720
721void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
722 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
723 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
724 int j;
725
726 /* Initialize registers with the prev. intermediate value */
727 a = context->state[0];
728 b = context->state[1];
729 c = context->state[2];
730 d = context->state[3];
731 e = context->state[4];
732 f = context->state[5];
733 g = context->state[6];
734 h = context->state[7];
735
736 j = 0;
737 do {
738 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
739 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
740 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
741 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
742 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
743 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
744 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
745 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
746 } while (j < 16);
747
748 /* Now for the remaining rounds up to 79: */
749 do {
750 ROUND512(a,b,c,d,e,f,g,h);
751 ROUND512(h,a,b,c,d,e,f,g);
752 ROUND512(g,h,a,b,c,d,e,f);
753 ROUND512(f,g,h,a,b,c,d,e);
754 ROUND512(e,f,g,h,a,b,c,d);
755 ROUND512(d,e,f,g,h,a,b,c);
756 ROUND512(c,d,e,f,g,h,a,b);
757 ROUND512(b,c,d,e,f,g,h,a);
758 } while (j < 80);
759
760 /* Compute the current intermediate hash value */
761 context->state[0] += a;
762 context->state[1] += b;
763 context->state[2] += c;
764 context->state[3] += d;
765 context->state[4] += e;
766 context->state[5] += f;
767 context->state[6] += g;
768 context->state[7] += h;
769
770 /* Clean up */
771 a = b = c = d = e = f = g = h = T1 = 0;
772}
773
774#else /* SHA2_UNROLL_TRANSFORM */
775
776void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
777 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
778 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
779 int j;
780
781 /* Initialize registers with the prev. intermediate value */
782 a = context->state[0];
783 b = context->state[1];
784 c = context->state[2];
785 d = context->state[3];
786 e = context->state[4];
787 f = context->state[5];
788 g = context->state[6];
789 h = context->state[7];
790
791 j = 0;
792 do {
794 /* Convert TO host byte order */
795 REVERSE64(*data++, W512[j]);
796 /* Apply the SHA-512 compression function to update a..h */
797 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
798#else /* BYTE_ORDER == LITTLE_ENDIAN */
799 /* Apply the SHA-512 compression function to update a..h with copy */
800 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
801#endif /* BYTE_ORDER == LITTLE_ENDIAN */
802 T2 = Sigma0_512(a) + Maj(a, b, c);
803 h = g;
804 g = f;
805 f = e;
806 e = d + T1;
807 d = c;
808 c = b;
809 b = a;
810 a = T1 + T2;
811
812 j++;
813 } while (j < 16);
814
815 do {
816 /* Part of the message block expansion: */
817 s0 = W512[(j+1)&0x0f];
818 s0 = sigma0_512(s0);
819 s1 = W512[(j+14)&0x0f];
820 s1 = sigma1_512(s1);
821
822 /* Apply the SHA-512 compression function to update a..h */
823 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
824 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
825 T2 = Sigma0_512(a) + Maj(a, b, c);
826 h = g;
827 g = f;
828 f = e;
829 e = d + T1;
830 d = c;
831 c = b;
832 b = a;
833 a = T1 + T2;
834
835 j++;
836 } while (j < 80);
837
838 /* Compute the current intermediate hash value */
839 context->state[0] += a;
840 context->state[1] += b;
841 context->state[2] += c;
842 context->state[3] += d;
843 context->state[4] += e;
844 context->state[5] += f;
845 context->state[6] += g;
846 context->state[7] += h;
847
848 /* Clean up */
849 a = b = c = d = e = f = g = h = T1 = T2 = 0;
850}
851
852#endif /* SHA2_UNROLL_TRANSFORM */
853
854void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
855 unsigned int freespace, usedspace;
856
857 if (len == 0) {
858 /* Calling with no data is valid - we do nothing */
859 return;
860 }
861
862 /* Sanity check: */
863 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
864
865 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
866 if (usedspace > 0) {
867 /* Calculate how much free space is available in the buffer */
868 freespace = SHA512_BLOCK_LENGTH - usedspace;
869
870 if (len >= freespace) {
871 /* Fill the buffer completely and process it */
872 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
873 ADDINC128(context->bitcount, freespace << 3);
874 len -= freespace;
875 data += freespace;
876 SHA512_Transform(context, (sha2_word64*)context->buffer);
877 } else {
878 /* The buffer is not yet full */
879 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
880 ADDINC128(context->bitcount, len << 3);
881 /* Clean up: */
882 usedspace = freespace = 0;
883 return;
884 }
885 }
886 while (len >= SHA512_BLOCK_LENGTH) {
887 /* Process as many complete blocks as we can */
888 MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
889 SHA512_Transform(context, (sha2_word64*)context->buffer);
890 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
892 data += SHA512_BLOCK_LENGTH;
893 }
894 if (len > 0) {
895 /* There's left-overs, so save 'em */
896 MEMCPY_BCOPY(context->buffer, data, len);
897 ADDINC128(context->bitcount, len << 3);
898 }
899 /* Clean up: */
900 usedspace = freespace = 0;
901}
902
903void SHA512_Last(SHA512_CTX* context) {
904 unsigned int usedspace;
905
906 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
907#if BYTE_ORDER == LITTLE_ENDIAN
908 /* Convert FROM host byte order */
909 REVERSE64(context->bitcount[0],context->bitcount[0]);
910 REVERSE64(context->bitcount[1],context->bitcount[1]);
911#endif
912 if (usedspace > 0) {
913 /* Begin padding with a 1 bit: */
914 context->buffer[usedspace++] = 0x80;
915
916 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
917 /* Set-up for the last transform: */
918 MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
919 } else {
920 if (usedspace < SHA512_BLOCK_LENGTH) {
921 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
922 }
923 /* Do second-to-last transform: */
924 SHA512_Transform(context, (sha2_word64*)context->buffer);
925
926 /* And set-up for the last transform: */
928 }
929 } else {
930 /* Prepare for final transform: */
932
933 /* Begin padding with a 1 bit: */
934 *context->buffer = 0x80;
935 }
936 /* Store the length of input data (in bits): */
937 MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], &context->bitcount[1],
938 sizeof(sha2_word64));
939 MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8], &context->bitcount[0],
940 sizeof(sha2_word64));
941
942 /* Final transform: */
943 SHA512_Transform(context, (sha2_word64*)context->buffer);
944}
945
946int SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
947 sha2_word64 *d = (sha2_word64*)digest;
948
949 /* Sanity check: */
950 assert(context != (SHA512_CTX*)0);
951
952 /* If no digest buffer is passed, we don't bother doing this: */
953 if (digest != (sha2_byte*)0) {
954 SHA512_Last(context);
955
956 /* Save the hash data for output: */
957#if BYTE_ORDER == LITTLE_ENDIAN
958 {
959 /* Convert TO host byte order */
960 int j;
961 for (j = 0; j < 8; j++) {
962 REVERSE64(context->state[j],context->state[j]);
963 *d++ = context->state[j];
964 }
965 }
966#else
968#endif
969 }
970
971 /* Zero out state data */
972 MEMSET_BZERO(context, sizeof(*context));
973 return 1;
974}
975
976char *SHA512_End(SHA512_CTX* context, char buffer[]) {
977 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
978 int i;
979
980 /* Sanity check: */
981 assert(context != (SHA512_CTX*)0);
982
983 if (buffer != (char*)0) {
984 SHA512_Final(digest, context);
985 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
986 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
987 *buffer++ = sha2_hex_digits[*d & 0x0f];
988 d++;
989 }
990 *buffer = (char)0;
991 } else {
992 MEMSET_BZERO(context, sizeof(*context));
993 }
995 return buffer;
996}
997
998char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
999 SHA512_CTX context;
1000
1001 SHA512_Init(&context);
1002 SHA512_Update(&context, data, len);
1003 return SHA512_End(&context, digest);
1004}
1005
1006
1007/*** SHA-384: *********************************************************/
1009 if (context == (SHA384_CTX*)0) {
1010 return 0;
1011 }
1012 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
1014 context->bitcount[0] = context->bitcount[1] = 0;
1015 return 1;
1016}
1017
1018void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1019 SHA512_Update((SHA512_CTX*)context, data, len);
1020}
1021
1022int SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1023 sha2_word64 *d = (sha2_word64*)digest;
1024
1025 /* Sanity check: */
1026 assert(context != (SHA384_CTX*)0);
1027
1028 /* If no digest buffer is passed, we don't bother doing this: */
1029 if (digest != (sha2_byte*)0) {
1030 SHA512_Last((SHA512_CTX*)context);
1031
1032 /* Save the hash data for output: */
1033#if BYTE_ORDER == LITTLE_ENDIAN
1034 {
1035 /* Convert TO host byte order */
1036 int j;
1037 for (j = 0; j < 6; j++) {
1038 REVERSE64(context->state[j],context->state[j]);
1039 *d++ = context->state[j];
1040 }
1041 }
1042#else
1044#endif
1045 }
1046
1047 /* Zero out state data */
1048 MEMSET_BZERO(context, sizeof(*context));
1049 return 1;
1050}
1051
1052char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1053 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1054 int i;
1055
1056 /* Sanity check: */
1057 assert(context != (SHA384_CTX*)0);
1058
1059 if (buffer != (char*)0) {
1060 SHA384_Final(digest, context);
1061 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1062 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1063 *buffer++ = sha2_hex_digits[*d & 0x0f];
1064 d++;
1065 }
1066 *buffer = (char)0;
1067 } else {
1068 MEMSET_BZERO(context, sizeof(*context));
1069 }
1071 return buffer;
1072}
1073
1074char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1075 SHA384_CTX context;
1076
1077 SHA384_Init(&context);
1078 SHA384_Update(&context, data, len);
1079 return SHA384_End(&context, digest);
1080}
1081
#define T2
Definition: md5.c:133
#define T1
Definition: md5.c:132
__uint32_t uint32_t
#define BYTE_ORDER
__uint64_t u_int64_t
__uint8_t uint8_t
uint32_t i
#define char
__inline__ const void *__restrict__ size_t len
__uint64_t uint64_t
#define LITTLE_ENDIAN
__uint32_t u_int32_t
__uint8_t u_int8_t
__inline__ int
#define assert
size_t st_index_t h
uint8_t sha2_byte
Definition: sha2.c:111
#define Sigma0_512(x)
Definition: sha2.c:220
uint32_t sha2_word32
Definition: sha2.c:112
char * SHA384_End(SHA384_CTX *context, char buffer[])
Definition: sha2.c:1052
#define Sigma0_256(x)
Definition: sha2.c:214
#define ADDINC128(w, n)
Definition: sha2.c:158
int SHA384_Final(sha2_byte digest[], SHA384_CTX *context)
Definition: sha2.c:1022
void SHA384_Update(SHA384_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:1018
#define Maj(x, y, z)
Definition: sha2.c:211
#define sigma0_512(x)
Definition: sha2.c:222
int SHA256_Final(sha2_byte digest[], SHA256_CTX *context)
Definition: sha2.c:578
char * SHA512_End(SHA512_CTX *context, char buffer[])
Definition: sha2.c:976
void SHA256_Update(SHA256_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:529
#define REVERSE64(w, x)
Definition: sha2.c:143
#define ULL(number)
Definition: sha2.c:134
char * SHA256_Data(const sha2_byte *data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH])
Definition: sha2.c:665
int SHA384_Init(SHA384_CTX *context)
Definition: sha2.c:1008
#define Sigma1_512(x)
Definition: sha2.c:221
char * SHA256_End(SHA256_CTX *context, char buffer[])
Definition: sha2.c:643
int SHA512_Init(SHA512_CTX *context)
Definition: sha2.c:675
#define sigma1_256(x)
Definition: sha2.c:217
#define REVERSE32(w, x)
Definition: sha2.c:138
void SHA512_Last(SHA512_CTX *)
Definition: sha2.c:903
void SHA512_Transform(SHA512_CTX *, const sha2_word64 *)
Definition: sha2.c:776
#define MEMSET_BZERO(p, l)
Definition: sha2.c:184
#define Sigma1_256(x)
Definition: sha2.c:215
#define MEMCPY_BCOPY(d, s, l)
Definition: sha2.c:185
uint64_t sha2_word64
Definition: sha2.c:113
#define SHA512_SHORT_BLOCK_LENGTH
Definition: sha2.c:128
#define Ch(x, y, z)
Definition: sha2.c:210
char * SHA384_Data(const sha2_byte *data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH])
Definition: sha2.c:1074
char * SHA512_Data(const sha2_byte *data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH])
Definition: sha2.c:998
int SHA256_Init(SHA256_CTX *context)
Definition: sha2.c:344
#define sigma1_512(x)
Definition: sha2.c:223
#define SHA256_SHORT_BLOCK_LENGTH
Definition: sha2.c:126
int SHA512_Final(sha2_byte digest[], SHA512_CTX *context)
Definition: sha2.c:946
void SHA512_Update(SHA512_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:854
void SHA256_Transform(SHA256_CTX *, const sha2_word32 *)
Definition: sha2.c:449
#define sigma0_256(x)
Definition: sha2.c:216
#define SHA256_DIGEST_STRING_LENGTH
Definition: sha2.h:80
#define SHA512_DIGEST_LENGTH
Definition: sha2.h:85
#define SHA384_DIGEST_STRING_LENGTH
Definition: sha2.h:83
#define SHA384_DIGEST_LENGTH
Definition: sha2.h:82
#define SHA384_BLOCK_LENGTH
Definition: sha2.h:81
#define SHA512_BLOCK_LENGTH
Definition: sha2.h:84
#define SHA512_DIGEST_STRING_LENGTH
Definition: sha2.h:86
#define SHA256_DIGEST_LENGTH
Definition: sha2.h:79
#define SHA256_BLOCK_LENGTH
Definition: sha2.h:78
#define f
uint8_t buffer[SHA256_BLOCK_LENGTH]
Definition: sha2.h:125
uint64_t bitcount
Definition: sha2.h:124
uint32_t state[8]
Definition: sha2.h:123
uint8_t buffer[SHA512_BLOCK_LENGTH]
Definition: sha2.h:130
uint64_t bitcount[2]
Definition: sha2.h:129
uint64_t state[8]
Definition: sha2.h:128