Inter-Client Exchange (ICE) Protocol

X Consortium Standard

Robert Scheifler, X Consortium
Jordan Brown
Quarterdeck Office Systems

Inter-Client Exchange (ICE) Protocol: X Consortium Standard

by Robert Scheifler
Jordan Brown
Quarterdeck Office Systems

X Version 11, Release 7.7

Version 1.1
Copyright © 1993, 1994 X Consortium

Abstract

There are numerous possible protocol sthat can be used for communication among clients. They have many similarities
and common needs, including authentication, version negotiation, datatyping, and connection management. The Inter-
Client Exchange (ICE) protocol is intended to provide a framework for building such protocols. Using ICE reduces
the complexity of designing new protocols and allows the sharing of many aspects of the implementation.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “ Software”),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Table of Contents

1. PUrPOSE @NO GOBIS ...ttt ettt ettt et eaaas 1
2. OvErView Of the PrOtOCOIc.uuuiiiiii et e e 2
R DT = R Y o] T PP 4
PrIMITIVE TYPES ..ttt ettt e e et e et e e e et eeeaaa s 4
COMPIEX TYPES ettt ettt ettt ettt e et e e et et e e et et e e et et e e e ee b e e e e et e eann 4
MESSAGE FOIMIEL ...ttt e et e e e 4

4. Overall ProtoCOI DESCIIPIIONvueiiiti ettt ettt ettt e e et e e et e eeeat e e e enb e aees 6
5. ICE Control Subprotocol -- Major OPCOUE Oeeiiiiiieeiiii et e e e eees 7
GENENC EITOr ClBSSES ...iiiti ettt ettt e e et e ettt e e e ena e eees 11

ICE EITON ClBSSESttieieiti ettt ettt ettt ettt e ettt e e et et e e e e et e e e e et neeeeebanaaeees 12

B. SHALE DIGOIAIMS ...eeetieeeeit ettt ettt e et e e et e e et e e et et e e et e e 14
7. ProtoCol ENCOOINGceerieeiiiii ettt e e et e et e e ettt e e et et e e e eeaaaeeees 17
PIIMITIVES ..ottt e ettt e et e bt e e e et e e e eat e eee 17
ENUMETELIONS ...ttt e e e et e e e aa s 17
COMPOUNT TYPES ..ttt ettt ettt ettt e et ettt e e et et e e et et e e e e et e e e e anaes 17

[CE MINOF OPCOOES ...ttt ettt ettt ettt ettt e et et e e e et e e e 17
MESSAgE ENCOUING ...cvveeeiei ettt ettt e e ettt e e et e e e eeb e e eenbaaaeees 18

Error Class ENCOTINGccvuuiiiiiieiee ettt e e e e e e eeees 20
Generic Error Class ENCOOINGcvvuruiiiiiiiie ettt e e e e e e 21

| CE-specific Error Class ENCOTINGcovuuuuiiiiiiiieieiie e 21

AL MOAITICATON HISOMY ... et a e 22
REIaSE 6 10 REIEASE B.1 ...ttt 22
Rel@ase 6.1 t0 REIEASE 6.3 ... 22

B. ICE X ReNdEZVOUS ProtOCOIccovuuiieiiiiiieieiii ettt 23
Fg11 oo (8ot (oo RO PP TP PP UPPPT 23
Overview Of ICE X RENUEZVOUSccouuiiiiiiiieee ettt et 23
Registering KNOWN ProtOCOISciiiutieiiiiiiee e e eees 23
INitiating the RENAEZVOUSiiiiiiieiee et 23

|CE SUDProtoCOl VEISIONINGccovvuieiiitiiee ittt ettt e e e e e e e e eees 26

Chapter 1. Purpose and Goals

In discussing a variety of protocols -- existing, under development, and hypothetical -- it was noted that
they have many elements in common. Most protocols need mechanisms for authentication, for version
negotiation, and for setting up and taking down connections. There are also cases where the same two
parties need to talk to each other using multiple protocols. For example, an embedding relationship
between two parties is likely to require the simultaneous use of session management, data transfer,
focus negotiation, and command notification protocols. While these are logically separate protocols, it is
desirable for them to share as many pieces of implementation as possible.

The Inter-Client Exchange (ICE) protocol provides a generic framework for building protocols on top
of reliable, byte-stream transport connections. It provides basic mechanisms for setting up and shutting
down connections, for performing authentication, for negotiating versions, and for reporting errors. The
protocols running within an ICE connection are referred to here as subprotocols. |CE provides facilities
for each subprotocol to do its own version negotiation, authentication, and error reporting. In addition,
if two parties are communicating using several different subprotocols, ICE will allow them to share the
same transport layer connection.

Chapter 2. Overview of the Protocol

Through some mechanism outside I CE, two parties make themselves known to each other and agree that
they would liketo communicate using an | CE subprotocol. | CE assumesthat this negotiation includes some
notion by which the partieswill decidewhichisthe”originating” party and which isthe“answering” party.
The negotiation will also need to provide the originating party with a name or address of the answering
party. Examples of mechanisms by which parties can make themselves known to each other are the X
sel ection mechanism, environment variables, and shared files.

Theoriginating party first determines whether thereis an existing | CE connection between the two parties.
If there s, it can re-use the existing connection and move directly to the setup of the subprotocal. If no
ICE connection exists, the originating party will open atransport connection to the answering party and
will start |CE connection setup.

The ICE connection setup dialog consists of three magjor parts. byte order exchange, authentication, and
connection information exchange. The first message in each direction isa Byt eOr der message telling
which byte order will be used by the sending party in messages that it sends. After that, the originating
party sends a Connect i onSet up message giving information about itself (vendor name and release
number) and giving alist of ICE version numbers it is capable of supporting and alist of authentication
schemes it iswilling to accept. Authentication is optional. If no authentication is required, the answering
party responds with aConnect i onRepl y message giving information about itself, and the connection
setup is compl ete.

If the connection setup is to be authenticated, the answering party will respond with an
Aut hent i cati onRequi red message instead of a Connecti onRepl y message. The parties
then exchange Aut henticati onReply and Aut henti cati onNext Phase messages until
authentication is complete, at which time the answering party finally sends its Connect i onRepl y

message.

Once an ICE connection is established (or an existing connection reused), the originating party starts
subprotocol negotiation by sending a Pr ot ocol Set up message. This message gives the name of the
subprotocol that the parties have agreed to use, along with the ICE major opcode that the originating
party has assigned to that subprotocol. Authentication can also occur for the subprotocol, independently
of authentication for the connection. Subprotocol authentication is optional. If there is no subprotocol
authentication, the answering party responds with a Pr ot ocol Repl y message, giving the ICE major
opcode that it has assigned for the subprotocol.

Subprotocols are authenticated independently of each other, because they may have differing security
requirements. If there is authentication for this particular subprotocol, it takes place before the
answering party emits the Pr ot ocol Repl y message, and it uses the Aut hent i cati onRequi r ed
Aut henti cati onRepl y and Aut hent i cat i onNext Phase messages, just as for the connection
authentication. Only when subprotocol authentication is complete does the answering party send its
Pr ot ocol Repl y message.

When a subprotocol has been set up and authenticated, the two parties can communicate using messages
defined by the subprotocol. Each message hastwo opcodes: amajor opcode and aminor opcode. Each party
will send messages using the major opcodeit hasassigned initsPr ot ocol Set up or Pr ot ocol Repl y
message. These opcodes will, in general, not be the same. For a particular subprotocol, each party will
need to keep track of two major opcodes: the major opcode it uses when it sends messages, and the major
opcode it expects to see in messages it receives. The minor opcode values and semantics are defined by
each individual subprotocol.

Each subprotocol will have one or more messages whose semantics are that the subprotocol is to be shut
down. Whether thisisdoneunilaterally or is performed through negotiation is defined by each subprotocaol.

Overview of the Protocol

Once a subprotocol is shut down, its major opcodes are removed from use; no further messages on this
subprotocol should be sent until the opcode is reestablished with Pr ot ocol Set up

ICE has a facility to negotiate the closing of the connection when there are no longer any active
subprotocols. When either party decides that no subprotocols are active, it can send a WVant ToCl ose
message. |f the other party agrees to close the connection, it can simply do so. If the other party wants to
keep the connection open, it can indicate its desire by replying with aNoCl ose message.

It should be noted that the party that initiates the connection isn't necessarily the same as the one that
initiates setting up a subprotocol. For example, suppose party A connects to party B. Party A will issue
theConnect i onSet up message and party B will respond withaConnect i onRepl y message. (The
authentication stepsare omitted herefor brevity.) Typically, party A will alsoissuethe Pr ot ocol Set up
message and expect aPr ot ocol Repl y from party B. Oncethe connectionisestablished, however, either
party may initiate the negotiation of a subprotocol. Continuing this example, party B may decide that it
needsto set up asubprotocol for communication with party A. Party B would issuethe Pr ot ocol Set up
message and expect aPr ot ocol Repl y from party A.

Chapter 3. Data Types

| CE messages contain several types of data. Byte order is negotiated in theinitial connection messages; in
genera datais sent in the sender's byte order and the receiver is required to swap it appropriately. In order
to support 64-bit machines, |CE messages are padded to multiples of 8 bytes. All messages are designed
so that fields are “naturally” aligned on 16-, 32-, and 64-bit boundaries. The following formula gives the
number of bytes necessary to pad E bytes to the next multiple of b:

pad(E, b) = (b - (E mod b)) mod b

Primitive Types

Type Name Description

CARDS8 8-bit unsigned integer

CARD16 16-bit unsigned integer

CARD32 32-hit unsigned integer

BOOL Fal se or True

LPCE A character from the X Portable Character Set in Latin Portable Character
Encoding

Complex Types

Type Name Type
VERSION [Mgjor, minor: CARD16]
STRING LISTofLPCE

LISTof<type> denotesacounted coll ection of <type>. The exact encoding variesdepending on the context;
see the encoding section.

Message Format

All ICE messages include the following information:

Field Type Description

CARDS8 protocol major opcode

CARDS protocol minor opcode

CARD32 length of remaining data in 8-byte units

Thefields are as follows:

Protocol major opcode This specifies what subprotocol the message isintended for. Mgjor
opcode O isreserved for | CE control messages. The major opcodes
of other subprotocols are dynamically assigned and exchanged at
protocol negotiation time.

Data Types

Protocol minor opcode

Length of datain 8-byte units

This specifies what protocol-specific operation is to be performed.
Minor opcode O is reserved for Errors; other values are protocol-
specific.

This specifies the length of the information following the first 8
bytes. Each message-type has a different format, and will need
to be separately length-checked against this value. As every data
item has either an explicit length, or an implicit length, this can
be easily accomplished. Messages that have too little or too much
data indicate a serious protocol failure, and should result in a
BadLengt h error.

Chapter 4. Overall Protocol Description

Every message sent in a given direction has an implicit sequence number, starting with 1. Sequence
numbers are global to the connection; independent sequence numbers are not maintained for each protocol.

Messages of a given major-opcode (i.e., of agiven protocol) must be responded to (if aresponseis called
for) in order by the receiving party. Messages from different protocols can be responded to in arbitrary
order.

Minor opcode 0 in every protocol is for reporting errors. At most one error is generated per request. If
more than one error condition is encountered in processing a request, the choice of which error is returned
is implementati on-dependent.

Error

offending-minor-opcode: CARDS8

severity: {CanContinue, Fat al ToPr ot ocol Fat al ToConnecti on
sequence-number: CARD32

class: CARD16

value(s): <dependent on major/minor opcode and class>

This message is sent to report an error in response to a message from any protocol. The Er r or message
existsin all protocol major-opcode spaces; it is minor-opcode zero in every protocol. The minor opcode
of the message that caused the error is reported, as well as the sequence number of that message. The
severity indicates the sender's behavior following the identification of the error. CanCont i nue indicates
the sender is willing to accept additional messages for this protocol. Fat al ToPr ocot ol indicates the
sender is unwilling to accept further messages for this protocol but that messages for other protocols may
be accepted. Fat al ToConnect i on indicatesthe sender isunwilling to accept any further messagesfor
any protocols on the connection. The sender is required to conform to specified severity conditions for
generic and ICE (major opcode 0) errors; see Generic Error Classes ICE Error Classes . The class defines
the generic class of error. Classes are specified separately for each protocol (numeric values can mean
different thingsin different protocols). The error values, if any, and their types vary with the specific error
classfor the protocol.

Chapter 5. ICE Control Subprotocol --
Major Opcode O

Each of the ICE control opcodes is described below. Most of the messages have additional information
included beyond the description above. The additional information is appended to the message header and
the length field is computed accordingly.

In the following message descriptions, “Expected errors’ indicates errors that may occur in the
normal course of events. Other errors (in particular BadVaj or BadM nor BadSt at e BadLengt h
BadVal ue Protocol Duplicate and Maj or OpcodeDupl i cat e might occur, but generaly
indicate a serious implementation failure on the part of the errant peer.

Byt eOr der
byte-order: {MSBfirst, LSBf i r st

Both parties must send this message before sending any other, including errors. This message specifies
the byte order that will be used on subsequent messages sent by this party.

Note

Note: If the receiver detects an error in this message, it must be sureto send itsown Byt eOr der
message before sending the Er r or .

Connecti onSet up

versions: LISTofVERSION

must-authenticate: BOOL

authenti cati on-protocol-names: LISTof STRING

vendor: STRING

release; STRING

Responses: ConnectionReply, AuthenticationRequired (See
note)

Expected errors: NoVer si on, Set upFai | ed, NoAut hent i cati on,

Aut hent i cati onRej ect ed, Aut henti cati onFai |l ed

The party that initiates the connection (the one that does the "connect()") must send this message as the
second message (after Byt eOr der on startup.

Versions gives alist, in decreasing order of preference, of the protocol versions this party is capable of
speaking. This document specifies major version 1, minor version 0.

If must-authenticateis Tr ue theinitiating party demands authentication; the accepting party must pick an
authentication scheme and use it. In this case, the only valid response is Aut hent i cat i onRequi r ed

If must-authenticate is Fal se the accepting party may choose an authentication mechanism, use a
host-address-based authentication scheme, or skip authentication. When must-authenticate is Fal se

ICE Control Subprotocol
-- Mgjor Opcode 0

Connecti onRepl y and Aut hent i cat i onRequi r ed are both valid responses. If a host-address-
based authentication schemeisused, Aut hent i cat i onRej ect ed and Aut henti cati onFai | ed
errors are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is Fal se list of
authentication protocolsthe party iswilling to perform. If must-authenticateis Tr ue presumably the party
will offer only authentication mechanisms allowing mutual authentication.

Vendor gives the name of the vendor of this | CE implementation.

Release gives the release identifier of this |CE implementation.

Aut hent i cati onRequi red

authenti cation-protocol-index: CARDS

data: <specific to authentication protocol >

Response: Aut henti cati onReply

Expected errors: Aut hent i cati onRej ect ed, Aut henti cati onFai |l ed

Thismessageissent inresponsetoaConnect i onSet up or Pr ot ocol Set up messageto specify that
authentication is to be done and what authentication mechanism is to be used.

The authentication protocol is specified by a O-based index into the list of names given in the
Connect i onSet up or Prot ocol Set up Any protocol-specific data that might be required is also
sent.

Aut henti cati onReply

data: <specific to authentication protocol >

Responses: Aut hent i cat i onNext Phase, Connecti onRepl y,
Pr ot ocol Repl y

Expected errors: Aut hent i cati onRej ect ed, Aut henti cati onFai | ed,
Set upFai | ed

This message is sent in response to an AuthenticationRequired or
Aut hent i cat i onNext Phase message, to supply authentication data as defined by the authentication
protocol being used.

Note that this message is sent by the party that initiated the current negotiation -- the party that sent the
Connect i onSet up or Pr ot ocol Set up message.

Aut hent i cat i onNext Phase indicates that more is to be done to complete the authentication. If the
authentication is complete, Connect i onRepl y is appropriate if the current authentication handshake
is the result of a Connect i onSet up and a Pr ot ocol Repl y is appropriate if it is the result of a
Pr ot ocol Set up.

Aut hent i cat i onNext Phase

data: <specific to authentication protocol >

Response: Aut henti cati onReply

ICE Control Subprotocol
-- Mgjor Opcode 0

Expected errors: Aut hent i cati onRej ect ed, Aut henti cati onFai |l ed

Thismessageissentinresponseto an Aut hent i cat i onRepl y message, to supply authentication data
as defined by the authentication protocol being used.

Connecti onReply

version-index: CARDS8
vendor: STRING
release; STRING

This message is sent in response to a Connect i onSet up or Aut henti cati onRepl y message to
indicate that the authentication handshake is complete.

Version-index givesa0-based index into thelist of versions offered inthe Connect i onSet up message;
it specifiestheversion of the | CE protocol that both parties should speak for the duration of the connection.

Vendor gives the name of the vendor of this | CE implementation.
Release gives the release identifier of this |CE implementation.

Pr ot ocol Set up

protocol-name; STRING

maj or-opcode: CARDS

versions: LISTofVERSION

vendor: STRING

release: STRING

must-authenticate: BOOL

authenti cation-protocol-names: LISTof STRING

Responses: Aut hent i cati onRequi r ed, Prot ocol Repl y

Expected errors: UnknownPr ot ocol , NoVer si on, Set upFai | ed,
NoAut henti cati on, Aut hent i cati onRej ect ed,

Aut henti cati onFai | ed
This message is used to initiate negotiation of a protocol and establish any authentication specific to it.
Protocol-name gives the name of the protocol the party wishes to speak.
Major-opcode gives the opcode that the party will use in messages it sends.
Versionsgivesalist of version numbers, in decreasing order of preference, that the party iswilling to speak.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

If must-authenticateis Tr ue, theinitiating party demands authentication; the accepting party must pick an
authentication scheme and useit. In this case, the only valid response is Aut hent i cat i onRequi r ed

ICE Control Subprotocol
-- Mgjor Opcode 0

If must-authenticate is Fal se, the accepting party may choose an authentication mechanism, use a
host-address-based authentication scheme, or skip authentication. When must-authenticate is Fal se,
Pr ot ocol Repl y andAut hent i cat i onRequi r ed areboth valid responses. If ahost-address-based
authentication schemeisused, Aut hent i cati onRej ect ed and Aut henti cat i onFai | ed errors
are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is Fal se list of
authentication protocolsthe party iswilling to perform. If must-authenticateis Tr ue presumably the party
will offer only authentication mechanisms allowing mutual authentication.

Pr ot ocol Repl y

major-opcode: CARDS
version-index: CARDS8
vendor: STRING
release; STRING

This message is sent in response to a Pr ot ocol Set up or Aut henti cati onRepl y message to
indicate that the authentication handshake is complete.

Mgajor-opcode gives the opcode that this party will use in messages that it sends.

Version-index gives a 0-based index into the list of versions offered in the Pr ot ocol Set up message;
it specifies the version of the protocol that both parties should speak for the duration of the connection.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

Pi ng

Response: Pi ngRepl y

Thismessage is used to test if the connection is still functioning.

Pi ngRepl y

Thismessageis sent in response to a Pi ng message, indicating that the connection is till functioning.
Want ToCl ose

Responses: Want ToCl ose, NoCl ose, Pr ot ocol Set up

This message is used to initiate a possible close of the connection. The sending party has noticed that, as
aresult of mechanisms specific to each protocol, there are no active protocols left. There are four possible
scenarios arising from this request:

1. Thereceiving side noticed too, and has already sent aWant ToCl ose OnreceivingaWant ToCl ose
while already attempting to shut down, each party should simply close the connection.

2. Thereceiving side hasn't noticed, but agrees. It closes the connection.

3. Thereceiving side has a Pr ot ocol Set up "in flight," in which case it isto ignore Want ToCl ose
and the party sending Want Tod ose is to abandon the shutdown attempt when it receives the
Pr ot ocol Set up

10

ICE Control Subprotocol
-- Mgjor Opcode 0

4. The receiving side wants the connection kept open for some reason not specified by the ICE protocaol,
inwhich caseit sendsNoCl ose

See the state transition diagram for additional information.
NoCl ose
Thismessage is sent in response to aWant ToCl ose message to indicate that the responding party does

not want the connection closed at this time. The receiving party should not close the connection. Either
party may again initiate Want ToCl ose at some future time.

Generic Error Classes

These errors should be used by al protocols, as applicable. For ICE (major opcode O0),
Fat al ToPr ot ocol should beinterpreted as Fat al ToConnect i on.

BadM nor

offending-minor-opcode: <any>

severity: Fat al ToPr ot ocol or CanCont i nue (protocol's discretion)
values: (none)

Received a message with an unknown minor opcode.

BadSt at e

offending-minor-opcode; <any>

severity: Fat al ToPr ot ocol or CanCont i nue (protocol's discretion)
values: (none)

Received amessage with avalid minor opcode which isnot appropriate for the current state of the protocol.

BadLengt h

offending-minor-opcode: <any>

severity: Fat al ToPr ot ocol or CanCont i nue (protocol's discretion)
values: (none)

Received a message with a bad length. The length of the message is longer or shorter than required to

contain the data.

BadVal ue

offending-minor-opcode: <any>

severity: CanCont i nue

values: CARD32 Byte offset to offending value in offending message.

CARD32 Length of offending value. <varies> Offending value

Received a message with a bad value specified.

11

ICE Control Subprotocol
-- Mgjor Opcode 0

ICE Error Classes

These errors are al major opcode O errors.

BadMaj or

offending-minor-opcode: <any>

severity: CanCont i nue
values: CARDS8 Opcode

The opcode given is not one that has been registered.
NoAut hent i cati on
offending-minor-opcode: Connect i onSet up, Prot ocol Set up

severity: Connect i onSet up \(-> Fat al ToConnecti on
Pr ot ocol Set up \(-> Fat al ToPr ot ocol

values: (none)

None of the authentication protocols offered are available.

NoVer si on

offending-minor-opcode: Connecti onSet up, Pr ot ocol Set up

severity: Connecti onSet up \(-> Fat al ToConnecti on
Pr ot ocol Set up \(-> Fat al ToPr ot ocol

values: (none)

None of the protocol versions offered are available.

Set upFai | ed

offending-minor-opcode: Connect i onSet up, Pr ot ocol Set up,
Aut hent i cati onReply

severity: Connecti onSet up \(-> Fat al ToConnecti on
Pr ot ocol Set up \(-> Fat al ToPr ot ocol
Aut henti cati onReply \(-> Fatal ToConnection if
authenticating a connection, otherwise Fat al ToPr ot ocol

values: STRING reason

The sending side is unable to accept the new connection or new protocol for a reason other than
authentication failure. Typicaly this error will be a result of inability to allocate additional resources on
the sending side. The reason field will give a human-interpretable message providing further detail on the
type of failure.

Aut henti cati onRej ect ed

offending-minor-opcode:; Aut hent i cati onRepl vy, Aut hent i cati onRequi r ed,
Aut hent i cat i onNext Phase

12

ICE Control Subprotocol

-- Mgjor Opcode 0
severity: Fat al ToPr ot ocol
values: STRING reason

Authentication rejected. The peer has failed to properly authenticate itself. The reason field will give a
human-interpretable message providing further detail.

Aut hent i cati onFai | ed

offending-minor-opcode: Aut hent i cati onRepl vy, Aut hent i cati onRequi r ed,
Aut hent i cati onNext Phase

severity: Fat al ToPr ot ocol
values: STRING reason

Authentication failed. Aut hent i cat i onFai | ed does not imply that the authentication was rejected,
as Aut henti cati onRej ect ed does. Instead it means that the sender was unable to complete the
authentication for some other reason. (For instance, it may have been unable to contact an authentication
server.) The reason field will give a human-interpretable message providing further detail.

Pr ot ocol Duplicate

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol (but see note)
values: STRING protocol name

The protocol name was aready registered. This is fatal to the "new" protocol being set up by
Pr ot ocol Set up but it does not affect the existing registration.

Maj or OpcodeDupl i cat e

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol (but see note)
values: CARDS opcode

The major opcode specified was already registered. This is fatal to the “new” protocol being set up by
Pr ot ocol Set up but it does not affect the existing registration.

UnknownPr ot ocol

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol
values: STRING protocol name

The protocol specified is not supported.

13

Chapter 6. State Diagrams

Here are the state diagrams for the party that initiates the connection:

Start:
connect to other end, send Byt eOr der Connect i onSet up -> conn_wait

conn_wait:
receive Connect i onRepl y -> stasis
receive Aut hent i cati onRequi r ed -> conn_authl
receive Er r or -> quit
receive <other>, send Er r or -> quit

conn_authl:
if good auth data, send Aut hent i cat i onRepl y -> conn_auth2
if bad auth data, send Er r or -> quit

conn_auth2:
receive Connect i onRepl y -> stasis
receive Aut hent i cat i onNext Phase ->conn_authl
receive Er r or -> quit
receive <other>, send Er r or -> quit

Here are top-level state transitions for the party that accepts connections.
listener:
accept connection -> init_wait
init_wait;
receive Byt eOr der Connecti onSet up ->auth_ask
receive <other>, send Er r or -> quit
auth_ask:
send Byt eOr der Connecti onReply
-> stasis
send Aut hent i cati onRequi r ed -> auth_wait

send Er r or -> quit

auth_wait:
receive Aut hent i cati onRepl y -> auth_check

receive <other>, send Er r or -> quit
auth_check:
if no more auth needed, send Connect i onRepl y -> stasis
if good auth data, send Aut hent i cat i onNext Phase -> auth_wait
if bad auth data, send Er r or -> quit

Here arethetop-level statetransitionsfor all parties after theinitial connection establishment subprotocol.

14

State Diagrams

Note

Note: this is not quite the truth for branches out from stasis, in that multiple conversations can
be interleaved on the connection.

stasis:
send Pr ot ocol Set up -> proto_wait
receive Pr ot ocol Set up -> proto_reply
send Pi ng -> ping_wait
receive Pi ng send Pi ngRepl y -> stasis
receive Want Tod ose -> shutdown_attempt
receive <other>, send Er r or -> stasis
all protocols shut down, send Vant ToCl ose -> close wait

proto_wait:
receive Pr ot ocol Repl y -> stasis
receive Aut hent i cati onRequi r ed -> give_authl
receive Er r or give up on this protocol -> stasis
receive Want Tod ose -> proto_wait

give authl:
if good auth data, send Aut hent i cat i onRepl y -> give _auth2
if bad auth data, send Er r or give up on this protocol -> stasis
receive Want Tod ose -> give authl

give auth2:
receive Pr ot ocol Repl y -> stasis
receive Aut hent i cat i onNext Phase -> give authl
receive Er r or give up on this protocol -> stasis
receive Want Tod ose -> give auth2

proto_reply:
send Pr ot ocol Repl y -> stasis
send Aut hent i cat i onRequi r ed ->take _authl
send Er r or give up on this protocol -> stasis

take authl:
receive Aut hent i cat i onRepl y ->take auth2
receive Er r or give up on this protocol -> stasis

take auth2;
if good auth data \(-> take_auth3
if bad auth data, send Er r or give up on this protocol -> stasis

take auth3:
if no more auth needed, send Pr ot ocol Repl y -> stasis
if good auth data, send Aut hent i cat i onNext Phase ->take authl
if bad auth data, send Er r or give up on this protocol -> stasis

ping_wait:
receive Pi ngRepl y -> stasis

quit:

15

State Diagrams

-> close connection

Here are the state transitions for shutting down the connection:

shutdown_attempt:
if want to stay alive anyway, send NoCl ose -> stasis
else -> quit

close wait:
receive Pr ot ocol Set up -> proto_reply
receive NoCl ose -> stasis
receive Want ToCl ose -> quit
connection close -> quit

16

Chapter 7. Protocol Encoding

In the encodings below, the first column isthe number of bytes occupied. The second column is either the
type (if the value is variable) or the actual value. Thethird column isthe description of the value (e.g., the

parameter name). Receivers must ignore bytes that are designated as unused or pad bytes.

This document describes major version 1, minor version 0 of the ICE protocol.

LISTof<type> indicates some number of repetitions of <type>, with no additional padding. The number

of repetitions must be specified elsewhere in the message.

Primitives
Type Name Length (bytes) Description
CARDS8 1 8-bit unsigned integer
CARD16 2 16-bit unsigned integer
CARD32 4 32-bit unsigned integer
LPCE 1 A character from the X Portable Character Set in Latin
Portable Character Encoding
Enumerations
Type Name Value Description
BOOL 0 False
1 True
Compound Types
Type Name Length (bytes) Type Description
VERSION
CARD16 Major version number
CARD16 Minor version number
STRING
2 CARD16 length of string in bytes
n LISTofLPCE string
p unused, p = pad(n+2, 4)
ICE Minor opcodes
M essage Name Encoding
Error 0
ByteOrder 1
ConnectionSetup 2
AuthenticationRequired 3

17

Protocol Encoding

M essage Name Encoding
AuthenticationReply 4
AuthenticationNextPhase 5
ConnectionReply 6
Protocol Setup 7
Protocol Reply 8
Ping 9
PingReply 10
WantToClose 11
NoClose 12

Message Encoding

Error
1 CARD8 maj or - opcode
1 0 Error
2 CARD16 cl ass
4 (n+p)/8+1 | ength
1 CARD8 of f endi ng- m nor - opcode
1 severity:
0 CanCont i nue
1 Fat al ToPr ot oco
2 Fat al ToConnecti on
2 unused
4 CARD32 sequence nunber of erroneous nessage
n <vari es> val ue(s)
p pad, p = pad(n,8)
Byt eOr der
1 0 | CE
1 1 Byt eOr der
1 byt e- order:
0 LSBf i r st
1 VBBf i r st
1 unused
4 0 | ength

Connecti onSet up

1 0 | CE

1 2 Connecti onSet up

1 CARDS Nunber of versions of fered

1 CARDS Nunber of authentication protocol nanes of fered
4 (i +) +tk+mtp)/ 8+1 | ength

1 BOOL must - aut henti cate

7 unused

i STRI NG vendor

j STRI NG rel ease

18

Protocol Encoding

k LI STof STRI NG aut henti cati on- pr ot ocol - nanmes
m LI STof VERSI ON version-1li st
p unused, p = pad(i +j +k+m 8)

Aut hent i cati onRequi r ed

1 0 | CE

1 3 Aut hent i cati onRequi r ed

1 CARDS aut henti cati on- prot ocol -i ndex
1 unused

4 (n+p)/8+1 | ength

2 n | ength of authentication data
6 unused

n <varies> dat a

p unused, p = pad(n, 8)

Aut hent i cati onReply

1 0 | CE

1 4 Aut hent i cati onReply

2 unused

4 (n+p)/8+1 l ength

2 n | ength of authentication data
6 unused

n <varies> dat a

p unused, p = pad(n, 8)

Aut hent i cat i onNext Phase

1 0 | CE

1 5 Aut hent i cat i onNext Phase

2 unused

4 (n+p)/8+1 l ength

2 n | ength of authentication data
6 unused

n <vari es> dat a

p unused, p = pad(n, 8)

Connecti onReply

1 0 | CE

1 6 Connecti onReply

1 CARDS ver si on-i ndex

1 unused

4 (i+)+p)/8 l ength

[STRI NG vendor

] STRI NG rel ease

p unused, p = pad(i+tj, 8)

Pr ot ocol Set up

1 0 | CE

1 7 Pr ot ocol Set up

1 CARDS maj or - opcode

1 BOCL nmust - aut henti cate

19

Protocol Encoding

4 (i +j +tk+mtn+p)/ 8+1 l ength

1 CARDS Nurmber of versions offered

1 CARDS Nunber of authentication protocol nanes of fered
6 unused

[STRI NG pr ot ocol - name

] STRI NG vendor

k STRI NG rel ease

m LI STof STRI NG aut henti cati on- pr ot ocol - nanes

n LI STof VERSI ON version-1|i st

p unused, p = pad(i +j +k+mtn, 8)

Pr ot ocol Reply

1 0 | CE
1 8 Pr ot ocol Reply
1 CARD8 ver si on-i ndex
1 CARDS maj or - opcode
4 (i+j+p)/8 [ength
[STRI NG vendor
j STRI NG rel ease
p unused, p = pad(i+j, 8)
Pi ng
1 0 | CE
1 9 Pi ng
2 0 unused
4 0 | ength
Pi ngRepl y
1 0 | CE
1 10 Pi ngRepl y
2 0 unused
4 0 | ength
Want ToCl ose
1 0 | CE
1 11 Want ToCl ose
2 0 unused
4 0 [ength
NoCl ose
1 0 | CE
1 12 NoCl ose
2 0 unused
4 0 | ength

Error Class Encoding

Generic errors have classesin the range 0x8000-0xFFFF, and subprotocol -specific errors are in the range
0x0000-0x 7FFF.

20

Protocol Encoding

Generic Error Class Encoding

Class Encoding
BadMinor 0x8000
BadState 0x8001
BadLength 0x8002
BadValue 0x8003

ICE-specific Error Class Encoding

Class Encoding

BadMajor 0
NoAuthentication 1
NoVersion 2
SetupFailed 3
AuthenticationRejected 4
AuthenticationFailed 5
ProtocolDuplicate 6
MajorOpcodeDuplicate 7
UnknownProtocol 8

21

Appendix A. Modification History

Release 6 to Release 6.1

Release 6.1 added the | CE X rendezvous protocol (Appendix B) and updated the document versionto 1.1.

Release 6.1 to Release 6.3

Release 6.3 added the listen on well known ports feature.

22

Appendix B. ICE X Rendezvous
Protocol

Introduction

The ICE X rendezvous protocol is designed to answer the need posed in Section 2 for one mechanism by
which two clients interested in communicating via ICE are able to exchange the necessary information.
This protocol is appropriate for any two ICE clients who also have X connectionsto the same X server.

Overview of ICE X Rendezvous

ThelCE X Rendezvous Mechanism requires clientswilling to act as | CE originating partiesto pre-register
the ICE subprotocols they support in an ICE_PROTOCOLS property on their top-level window. Clients
willing to act as | CE answering parties then send an ICE_PROTOCOLS X Cl i ent Message event to
the ICE originating parties. This Cl i ent Message event identifies the ICE network 1Ds of the ICE
answering party as well as the ICE subprotocol it wishes to speak. Upon receipt of this message the ICE
originating party uses the information to establish an ICE connection with the | CE answering party.

Registering Known Protocols

Clients willing to act as ICE originating parties preregister the |CE subprotocols they support in a list
of atoms held by an ICE_PROTOCOLS property on their top-level window. The name of each atom
listed in ICE_PROTOCOLS must be of the form ICE_INITIATE_pname where pname is the name of
the ICE subprotocol the ICE originating party is willing to speak, as would be specified in an ICE
Pr ot ocol Set up message.

Clients with an ICE_INITIATE pname atom in the ICE_PROTOCOLS property on their top-
level windows must respond to Cl i ent Message events of type ICE PROTOCOLS specifying
ICE_INITIATE_ pname. If a client does not want to respond to these client message events, it
should remove the ICE_INITIATE pname atom from its ICE_PROTOCOLS property or remove the
ICE_PROTOCOLS property entirely.

Initiating the Rendezvous

To initiate the rendezvous a client acting as an | CE answering party sendsan X Cl i ent Message event
of type ICE_PROTOCOL Sto an ICE originating party. ThisICE_PROTOCOL S client message contains
theinformation the | CE originating party needsto identify the |CE subprotocol the two parties will use as
well asthe ICE network identification string of the | CE answering party.

Before the ICE answering party sends the client message event it must define atext property on one of its
windows. Thistext property containsthe | CE answering party's | CE network identification string and will
be used by ICE originating parties to determine the ICE answering party's list of ICE network IDs.

The property name will normally be ICE_NETWORK _IDS, but may be any name of the ICE answering
party's choosing. The format for this text property is asfollows:

23

ICE X Rendezvous Protocol

Field Value

type XA_STRING

format 8

value comma-separated list of | CE network 1Ds

Once the ICE answering party has established this text property on one of its windows, it initiates the
rendezvous by sending an ICE_PROTOCOLS C i ent Message event to an ICE originating party's
top-level window. This event has the following format and must only be sent to windows that have pre-
registered the |CE subprotocol in an ICE_PROTOCOLS property on their top-level window.

Field Value

message _type Atom ="ICE_PROTOCOLS"

format 32

datal[0] Atom identifying the | CE subprotocol to speak

datal[1] Timestamp

datal[2] | CE answering party's window |D with | CE network 1Ds text property

datal[3] Atom naming text property containing the | CE answering party's ICE
network IDs

datal[4] Reserved. Must be 0.

The name of the atom in data.|[0] must be of the form ICE_INITIATE_pname, where pname is the name
of the ICE subprotocol the | CE answering party wishes to speak.

When an ICE originating party receivesaC i ent Message event of typel CE_PROTOCOL S specifying
ICE_INITIATE_pname it can initiate an ICE connection with the ICE answering party. To open this
connection the client retrieves the ICE answering party's ICE network IDs from the window specified in
datal[2] using the text property specified in datal[3].

If the connection attempt fails for any reason, the client must respond to the client message event by
sending areturn Cl i ent Message event to the window specified in datal[2]. This return event has the
following format:

Field Value

message_type Atom ="ICE_INITIATE_FAILED"

format 32

datal[0] Atom identifying the | CE subprotocol requested

datal[1] Timestamp

datal[2] Initiating party's window 1D (holding ICE_PROTOCOLYS)
datal[3] int: reason for failure

datal[4] Reserved, must be 0

The values of data.l[0] and data.l[1] are copied directly from the client message event the client received.

The value in datal[2] is the id of the window to which the ICE_PROTOCOLS.ICE_INITIATE_pname
client message event was sent.

Data.l[3] has one of the following values:

24

ICE X Rendezvous Protocol

Value Encoding Description

OpenFailed 1 The client was unable to open the connection (e.g.

acall to IceOpenConnection() failed). If the client

is able to distinguish authentication or authorization
errors from general errors, then the preferred reply is
Aut hent i cat i onFai | ed for authorization errors.

AuthenticationFailed 2 Authentication or authorization of the connection

or protocol setup was refused. Thisreply will be
given only if the client is able to distinguish it from
OpenFai | ed otherwise OpenFai | ed will be

returned.

SetupFailed 3 The client was unable to initiate the specified protocol
on the connection (e.g. acal to IceProtocol Setup()
failed).

UnknownProtocol 4 The client does not recognize the requested protocol.

(This represents a semantic error on the part of the
answering party.)

Refused 5 The client was in the process of removing

ICE_INITIATE_pname from its ICE_PROTOCOLS
list when the client message was sent; the client

no longer iswilling to establish the specified ICE
communication.

Note

Clients willing to act as ICE originating parties must update the ICE_PROTOCOLS property
on their top-level windows to include the ICE_INITIATE_pname atom(s) identifying the ICE
subprotocols they speak. The method a client uses to update the ICE_PROTOCOLS property to
include ICE_INITIATE_pname atoms is implementation dependent, but the client must ensure
the integrity of thelist to prevent the accidental omission of any atoms previously in thelist.

When setting up the ICE network IDs text property on one of its windows, the ICE
answering party can determine its comma-separated list of ICE network IDs by calling
IceComposeNetworkldList() after making a call to IcelistenForConnections(). The method an
| CE answering party usesto find the top-level windows of clientswilling to act asICE originating
parties is dependent upon the nature of the answering party. Some may wish to use the approach
of requiring the user to click on a client's window. Others wishing to find existing clients
without requiring user interaction might use something similar to the XQueryTree() method
used by several freely-available applications. In order for the ICE answering party to become
automatically aware of new clientswilling to originate | CE connections, the | CE answering party
might register for SubstructureNotify events on the root window of the display. When it receives
a SubstructureNotify event, the ICE answering party can check to see if it was the result of the
creation of anew client top-level window with an ICE_PROTOCOLS property.

In any case, before attempting to use this ICE X Rendezvous Mechanism I CE answering parties
wishing to speak |CE subprotocol pname should check for the ICE_INITIATE_pname atom in
the ICE_PROTOCOLS property on a client's top-level window. A client that does not include
an ICE_INITIATE_pname atom in a ICE_PROTOCOLS property on some top-level window
should be assumed to ignore Cl i ent Message events of type ICE_PROTOCOLS specifying
ICE_INITIATE_pname for ICE subprotocol pname.

25

ICE X Rendezvous Protocol

ICE Subprotocol Versioning

Although the version of the ICE subprotocol could be passed in the client message event, |CE provides
more a flexible version negotiation mechanism than will fit within a single Cl i ent Message event.
Because of this, | CE subprotocol versioning is handled within the | CE protocol setup phase.

Note

Clients wish to communicate with each other via an ICE subprotocol known as"RAP V1.0". In
RAP terminology one party, the "agent", communicates with other RAP-enabled applications on
demand. The user may direct the agent to establish communication with a specific application by
clicking on the application's window, or the agent may watch for new application windowsto be
created and automatically establish communication.

During startup the | CE answering party (the agent) first calls | ceRegisterForProtocol Reply() with
a list of the versions (i.e,, 1.0) of RAP the agent can speak. The answering party then calls
| ceListenForConnections() followed by |ceComposeNetworkldList() and storestheresulting ICE
network IDs string in atext property on one of its windows.

When the answering party (agent) finds a client with which it wishes to speak, it checks to see
if the ICE_INITIATE_RAP atomisin the ICE_PROTOCOLS property on the client's top-level
window. If it is present the agent sends the client's top-level window an ICE_PROTOCOLS
client message event as described above. When the client receivesthe client messageevent and is
willing to originate an | CE connection using RAP, it performs an | ceRegi sterForProtocol Setup()
with alist of the versions of RAP the client can speak. The client then retrieves the agent's ICE
network 1D from the property and window specified by the agent in the client message event and
calls IceOpenConnection(). After thiscall succeedsthe client calls | ceProtocol Setup() specifying
the RAP protocol. During thisprocess, | CE callsthe RAP protocol routinesthat handletheversion
negotiation.

Note that it is not necessary for purposes of this rendezvous that the client application call any
ICElib functions prior to receipt of the client message event.

26

	Inter-Client Exchange (ICE) Protocol
	Table of Contents
	Chapter 1. Purpose and Goals
	Chapter 2. Overview of the Protocol
	Chapter 3. Data Types
	Primitive Types
	Complex Types
	Message Format

	Chapter 4. Overall Protocol Description
	Chapter 5. ICE Control Subprotocol -- Major Opcode 0
	Generic Error Classes
	ICE Error Classes

	Chapter 6. State Diagrams
	Chapter 7. Protocol Encoding
	Primitives
	Enumerations
	Compound Types
	ICE Minor opcodes
	Message Encoding
	Error Class Encoding
	Generic Error Class Encoding
	ICE-specific Error Class Encoding

	Appendix A. Modification History
	Release 6 to Release 6.1
	Release 6.1 to Release 6.3

	Appendix B. ICE X Rendezvous Protocol
	Introduction
	Overview of ICE X Rendezvous
	Registering Known Protocols
	Initiating the Rendezvous
	ICE Subprotocol Versioning

