
The Logtalk Handbook
Release v3.61.0

Paulo Moura

Dec 20, 2022

CONTENTS

1 User Manual 1
1.1 Declarative object-oriented programming . 1
1.2 Main features . 2

1.2.1 Integration of logic and object-oriented programming 2
1.2.2 Integration of event-driven and object-oriented programming 2
1.2.3 Support for component-based programming . 3
1.2.4 Support for both prototype and class-based systems 3
1.2.5 Support for multiple object hierarchies . 3
1.2.6 Separation between interface and implementation . 3
1.2.7 Private, protected and public inheritance . 3
1.2.8 Private, protected and public object predicates . 4
1.2.9 Parametric objects . 4
1.2.10 High level multi-threading programming support . 4
1.2.11 Smooth learning curve . 4
1.2.12 Compatibility with most Prolog systems and the ISO standard 4
1.2.13 Performance . 4
1.2.14 Logtalk scope . 5

1.3 Nomenclature . 6
1.3.1 Prolog nomenclature . 6
1.3.2 Smalltalk nomenclature . 8
1.3.3 C++ nomenclature . 9
1.3.4 Java nomenclature . 11
1.3.5 Python nomenclature . 12

1.4 Messages . 14
1.4.1 Operators used in message sending . 14
1.4.2 Sending a message to an object . 14
1.4.3 Delegating a message to an object . 15
1.4.4 Sending a message to self . 15
1.4.5 Broadcasting . 15
1.4.6 Calling imported and inherited predicates . 15
1.4.7 Message sending and event generation . 16
1.4.8 Sending a message from a module . 17
1.4.9 Message sending performance . 17

1.5 Objects . 17
1.5.1 Objects, prototypes, classes, and instances . 17
1.5.2 Defining a new object . 18
1.5.3 Parametric objects . 21
1.5.4 Finding defined objects . 22
1.5.5 Creating a new object in runtime . 22
1.5.6 Abolishing an existing object . 23

i

1.5.7 Object directives . 23
1.5.8 Object relationships . 25
1.5.9 Object properties . 26
1.5.10 Built-in objects . 28

1.6 Protocols . 29
1.6.1 Defining a new protocol . 29
1.6.2 Finding defined protocols . 30
1.6.3 Creating a new protocol in runtime . 30
1.6.4 Abolishing an existing protocol . 30
1.6.5 Protocol directives . 31
1.6.6 Protocol relationships . 31
1.6.7 Protocol properties . 32
1.6.8 Implementing protocols . 33
1.6.9 Built-in protocols . 34

1.7 Categories . 34
1.7.1 Defining a new category . 34
1.7.2 Hot patching . 36
1.7.3 Finding defined categories . 38
1.7.4 Creating a new category in runtime . 38
1.7.5 Abolishing an existing category . 39
1.7.6 Category directives . 39
1.7.7 Category relationships . 40
1.7.8 Category properties . 40
1.7.9 Importing categories . 42
1.7.10 Calling category predicates . 43
1.7.11 Parametric categories . 44
1.7.12 Built-in categories . 44

1.8 Predicates . 44
1.8.1 Reserved predicate names . 45
1.8.2 Declaring predicates . 45
1.8.3 Defining predicates . 55
1.8.4 Definite clause grammar rules . 60
1.8.5 Built-in methods . 63
1.8.6 Predicate properties . 67
1.8.7 Finding declared predicates . 68
1.8.8 Calling Prolog predicates . 69
1.8.9 Defining Prolog multifile predicates . 73
1.8.10 Asserting and retracting Prolog predicates . 74

1.9 Inheritance . 75
1.9.1 Protocol inheritance . 75
1.9.2 Implementation inheritance . 76
1.9.3 Public, protected, and private inheritance . 79
1.9.4 Multiple inheritance . 80
1.9.5 Composition versus multiple inheritance . 80

1.10 Event-driven programming . 81
1.10.1 Definitions . 81
1.10.2 Event generation . 82
1.10.3 Communicating events to monitors . 82
1.10.4 Performance concerns . 83
1.10.5 Monitor semantics . 83
1.10.6 Activation order of monitors . 83
1.10.7 Event handling . 83

1.11 Multi-threading programming . 86
1.11.1 Enabling multi-threading support . 86

ii

1.11.2 Enabling objects to make multi-threading calls . 86
1.11.3 Multi-threading built-in predicates . 86
1.11.4 One-way asynchronous calls . 89
1.11.5 Asynchronous calls and synchronized predicates . 89
1.11.6 Synchronizing threads through notifications . 91
1.11.7 Threaded engines . 91
1.11.8 Multi-threading performance . 92

1.12 Error handling . 93
1.12.1 Raising Exceptions . 93
1.12.2 Type-checking . 93
1.12.3 Expected terms . 94
1.12.4 Compiler warnings and errors . 94
1.12.5 Runtime errors . 97

1.13 Reflection . 98
1.13.1 Structural reflection . 98
1.13.2 Behavioral reflection . 99

1.14 Writing and running applications . 99
1.14.1 Starting Logtalk . 99
1.14.2 Running parallel Logtalk processes . 99
1.14.3 Source files . 100
1.14.4 Multi-pass compiler . 101
1.14.5 Compiling and loading your applications . 101
1.14.6 Loader files . 102
1.14.7 Libraries of source files . 104
1.14.8 Settings files . 104
1.14.9 Compiler linter . 105
1.14.10 Compiler flags . 106
1.14.11 Reloading source files . 112
1.14.12 Batch processing . 113
1.14.13 Optimizing performance . 113
1.14.14 Portable applications . 113
1.14.15 Conditional compilation . 114
1.14.16 Avoiding common errors . 114
1.14.17 Coding style guidelines . 114

1.15 Printing messages and asking questions . 114
1.15.1 Printing messages . 115
1.15.2 Message tokenization . 116
1.15.3 Meta-messages . 117
1.15.4 Intercepting messages . 117
1.15.5 Asking questions . 118
1.15.6 Intercepting questions . 119

1.16 Term and goal expansion . 120
1.16.1 Defining expansions . 120
1.16.2 Expanding grammar rules . 122
1.16.3 Bypassing expansions . 122
1.16.4 Hook objects . 122
1.16.5 Virtual source file terms and loading context . 124
1.16.6 Default compiler expansion workflow . 125
1.16.7 User defined expansion workflows . 125
1.16.8 Using Prolog defined expansions . 125
1.16.9 Debugging expansions . 126

1.17 Documenting . 127
1.17.1 Documenting directives . 128
1.17.2 Processing and viewing documenting files . 131

iii

1.17.3 Inline formatting in comments text . 132
1.17.4 Diagrams . 133

1.18 Debugging . 133
1.18.1 Compiling source files in debug mode . 133
1.18.2 Procedure box model . 134
1.18.3 Defining spy points . 135
1.18.4 Tracing program execution . 137
1.18.5 Debugging using spy points . 138
1.18.6 Debugging commands . 138
1.18.7 Customizing term writing . 140
1.18.8 Context-switching calls . 141
1.18.9 Debugging messages . 142
1.18.10 Using the term-expansion mechanism for debugging 144
1.18.11 Ports profiling . 144
1.18.12 Debug and trace events . 144

1.19 Performance . 144
1.19.1 Source code compilation modes . 144
1.19.2 Local predicate calls . 145
1.19.3 Calls to imported or inherited predicates . 145
1.19.4 Calls to module predicates . 145
1.19.5 Messages . 145
1.19.6 Automatic expansion of built-in meta-predicates . 145
1.19.7 Inlining . 146
1.19.8 Generated code simplification and optimizations . 146
1.19.9 Size of the generated code . 146
1.19.10 Debug mode overhead . 146
1.19.11 Other considerations . 147

1.20 Installing Logtalk . 147
1.20.1 Hardware and software requirements . 147
1.20.2 Logtalk installers . 148
1.20.3 Source distribution . 148
1.20.4 Distribution overview . 148

1.21 Prolog integration and migration . 151
1.21.1 Source files with both Prolog code and Logtalk code 151
1.21.2 Encapsulating plain Prolog code in objects . 151
1.21.3 Converting Prolog modules into objects . 152
1.21.4 Compiling Prolog modules as objects . 153
1.21.5 Dealing with proprietary Prolog directives and predicates 156
1.21.6 Calling Prolog module predicates . 157
1.21.7 Loading converted Prolog applications . 157

2 Reference Manual 159
2.1 Grammar . 159

2.1.1 Entities . 159
2.1.2 Object definition . 159
2.1.3 Category definition . 160
2.1.4 Protocol definition . 161
2.1.5 Entity relations . 161
2.1.6 Entity identifiers . 166
2.1.7 Source file names . 168
2.1.8 Terms . 168
2.1.9 Directives . 169
2.1.10 Clauses and goals . 179
2.1.11 Lambda expressions . 180

iv

2.1.12 Entity properties . 181
2.1.13 Predicate properties . 184
2.1.14 Compiler flags . 185

2.2 Control constructs . 185
2.2.1 Message sending . 185
2.2.2 Message delegation . 187
2.2.3 Calling imported and inherited predicates . 189
2.2.4 Calling external predicates . 190
2.2.5 Context switching calls . 192

2.3 Directives . 193
2.3.1 Source file directives . 193
2.3.2 Conditional compilation directives . 198
2.3.3 Entity directives . 202
2.3.4 Predicate directives . 215

2.4 Built-in predicates . 231
2.4.1 Enumerating objects, categories and protocols . 231
2.4.2 Enumerating objects, categories and protocols properties 234
2.4.3 Creating new objects, categories and protocols . 236
2.4.4 Abolishing objects, categories and protocols . 241
2.4.5 Objects, categories, and protocols relations . 243
2.4.6 Event handling . 253
2.4.7 Multi-threading . 255
2.4.8 Multi-threading engines . 265
2.4.9 Compiling and loading source files . 273
2.4.10 Flags . 286
2.4.11 Linter . 289

2.5 Built-in methods . 289
2.5.1 Logic and control . 289
2.5.2 Execution context . 293
2.5.3 Reflection . 298
2.5.4 Database . 301
2.5.5 Meta-calls . 310
2.5.6 Error handling . 314
2.5.7 All solutions . 328
2.5.8 Event handling . 333
2.5.9 Message forwarding . 335
2.5.10 Definite clause grammar rules . 336
2.5.11 Term and goal expansion . 340
2.5.12 Coinduction hooks . 344
2.5.13 Message printing . 345
2.5.14 Question asking . 350

3 Tutorial 353
3.1 List predicates . 353

3.1.1 Defining a list object . 353
3.1.2 Defining a list protocol . 354
3.1.3 Summary . 356

3.2 Dynamic object attributes . 356
3.2.1 Defining a category . 356
3.2.2 Importing the category . 357
3.2.3 Summary . 358

3.3 A reflective class-based system . 358
3.3.1 Defining the base classes . 358
3.3.2 Summary . 359

v

3.4 Profiling programs . 359
3.4.1 Messages as events . 360
3.4.2 Profilers as monitors . 360
3.4.3 Summary . 362

4 FAQ 363
4.1 General . 363

4.1.1 Why are all versions of Logtalk numbered 2.x or 3.x? 363
4.1.2 Why do I need a Prolog compiler to use Logtalk? . 363
4.1.3 Is the Logtalk implementation based on Prolog modules? 363
4.1.4 Does the Logtalk implementation use term-expansion? 364

4.2 Compatibility . 364
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 364
4.2.2 Can I use constraint-based packages with Logtalk? . 364
4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 364

4.3 Installation . 364
4.3.1 The integration scripts/shortcuts are not working! . 364
4.3.2 I get errors when starting up Logtalk after upgrading to the latest version! 365

4.4 Portability . 365
4.4.1 Are my Logtalk applications portable across Prolog compilers? 365
4.4.2 Are my Logtalk applications portable across operating systems? 365

4.5 Programming . 365
4.5.1 Should I use prototypes or classes in my application? 366
4.5.2 Can I use both classes and prototypes in the same application? 366
4.5.3 Can I mix classes and prototypes in the same hierarchy? 366
4.5.4 Can I use a protocol or a category with both prototypes and classes? 366
4.5.5 What support is provided in Logtalk for defining and using components? 366
4.5.6 What support is provided in Logtalk for reflective programming? 366

4.6 Troubleshooting . 366
4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do

not work! . 367
4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when brows-

ing XML documenting files! . 367
4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports

a successful compilation with zero errors and zero warnings! 367
4.7 Usability . 367

4.7.1 Is there a shortcut for compiling and loading source files? 367
4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive? 368
4.7.3 Are there shortcuts for the make functionality? . 368

4.8 Deployment . 368
4.8.1 Can I create standalone applications with Logtalk? 368

4.9 Performance . 368
4.9.1 Is Logtalk implemented as a meta-interpreter? . 368
4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static

code? . 369
4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-

namic binding? . 369
4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? . . . 369
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 369

4.10 Licensing . 369
4.10.1 What’s the Logtalk distribution license? . 370
4.10.2 Can Logtalk be used in commercial applications? . 370
4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler? 370

4.11 Support . 370

vi

4.11.1 Are there professional consulting, training and supporting services? 370

5 Developer Tools 371
5.1 Overview . 371

5.1.1 Loading the developer tools . 372
5.1.2 Tools documentation . 372
5.1.3 Tools common flags . 372
5.1.4 Tools requirements . 372

5.2 asdf . 374
5.3 assertions . 374

5.3.1 API documentation . 375
5.3.2 Loading . 375
5.3.3 Testing . 375
5.3.4 Adding assertions to your source code . 375
5.3.5 Automatically adding file and line context information to assertions 375
5.3.6 Suppressing assertion calls from source code . 376
5.3.7 Redirecting assertion failure messages . 376
5.3.8 Converting assertion failures into errors . 376

5.4 code_metrics . 377
5.4.1 API documentation . 377
5.4.2 Loading . 377
5.4.3 Testing . 377
5.4.4 Available metrics . 377
5.4.5 Usage . 379
5.4.6 Defining new metrics . 379
5.4.7 Third-party tools . 379
5.4.8 Applying metrics to Prolog modules . 379
5.4.9 Applying metrics to plain Prolog code . 379

5.5 dead_code_scanner . 380
5.5.1 API documentation . 380
5.5.2 Loading . 381
5.5.3 Testing . 381
5.5.4 Usage . 381
5.5.5 Integration with the make tool . 381
5.5.6 Caveats . 382
5.5.7 Scanning Prolog modules . 382
5.5.8 Scanning plain Prolog files . 382

5.6 debug_messages . 382
5.6.1 API documentation . 383
5.6.2 Loading . 383
5.6.3 Testing . 383
5.6.4 Usage . 383

5.7 debugger . 384
5.7.1 API documentation . 384
5.7.2 Loading . 384
5.7.3 Testing . 385
5.7.4 Usage . 385
5.7.5 Alternative debugger tools . 385
5.7.6 Known issues . 386

5.8 diagrams . 386
5.8.1 Requirements . 386
5.8.2 API documentation . 387
5.8.3 Loading . 387
5.8.4 Testing . 387

vii

5.8.5 Supported diagrams . 388
5.8.6 Graph elements . 388
5.8.7 Supported graph languages . 390
5.8.8 Customization . 391
5.8.9 Linking diagrams . 395
5.8.10 Creating diagrams for Prolog module applications . 396
5.8.11 Creating diagrams for plain Prolog files . 396
5.8.12 Other notes . 396

5.9 doclet . 397
5.9.1 API documentation . 397
5.9.2 Loading . 397
5.9.3 Automating running doclets . 397
5.9.4 Integration with the make tool . 397

5.10 help . 398
5.10.1 API documentation . 398
5.10.2 Loading . 398
5.10.3 Testing . 398
5.10.4 Supported operating-systems . 398
5.10.5 Usage . 398
5.10.6 Experimental features . 398
5.10.7 Known issues . 399

5.11 issue_creator . 399
5.11.1 Requirements . 400
5.11.2 Loading . 400
5.11.3 Usage . 400
5.11.4 Known issues . 401

5.12 lgtdoc . 401
5.12.1 API documentation . 401
5.12.2 Loading . 401
5.12.3 Testing . 402
5.12.4 Documenting source code . 402
5.12.5 Generating documentation . 402
5.12.6 Documentation linter checks . 403

5.13 lgtunit . 403
5.13.1 Main files . 404
5.13.2 API documentation . 404
5.13.3 Loading . 404
5.13.4 Testing . 404
5.13.5 Writing and loading tests . 404
5.13.6 Running unit tests . 405
5.13.7 Parametric test objects . 406
5.13.8 Test dialects . 407
5.13.9 User-defined test dialects . 409
5.13.10 QuickCheck . 410
5.13.11 Skipping tests . 414
5.13.12 Checking test goal results . 415
5.13.13 Testing local predicates . 416
5.13.14 Testing non-deterministic predicates . 416
5.13.15 Testing generators . 416
5.13.16 Testing input/output predicates . 417
5.13.17 Suppressing tested predicates output . 418
5.13.18 Tests with timeout limits . 418
5.13.19 Setup and cleanup goals . 419
5.13.20 Test annotations . 419

viii

5.13.21 Working with test data files . 419
5.13.22 Flaky tests . 420
5.13.23 Debugging failed tests . 420
5.13.24 Code coverage . 421
5.13.25 Automating running tests . 422
5.13.26 Utility predicates . 423
5.13.27 Exporting test results in xUnit XML format . 424
5.13.28 Exporting test results in the TAP output format . 425
5.13.29 Generating Allure reports . 425
5.13.30 Exporting code coverage results in XML format . 427
5.13.31 Automatically creating bug reports at issue trackers 428
5.13.32 Minimizing test results output . 428
5.13.33 Known issues . 428

5.14 linter . 428
5.14.1 Main linter checks . 428
5.14.2 Help on linter warnings . 430
5.14.3 Extending the linter . 430
5.14.4 Linting Prolog modules . 430
5.14.5 Linting plain Prolog files . 430

5.15 make . 431
5.15.1 API documentation . 431

5.16 packs . 431
5.16.1 Requirements . 431
5.16.2 API documentation . 432
5.16.3 Loading . 432
5.16.4 Testing . 432
5.16.5 Usage . 433
5.16.6 Registries and packs storage . 433
5.16.7 Virtual environments . 433
5.16.8 Registry specification . 434
5.16.9 Registry handling . 436
5.16.10 Registry development . 437
5.16.11 Pack specification . 437
5.16.12 Pack URLs and Single Sign-On . 438
5.16.13 Multiple pack versions . 439
5.16.14 Pack dependencies . 439
5.16.15 Pack portability . 440
5.16.16 Pack development . 440
5.16.17 Pack handling . 441
5.16.18 Pack documentation . 442
5.16.19 Pinning registries and packs . 443
5.16.20 Testing packs . 444
5.16.21 Security considerations . 444
5.16.22 Best practices . 444
5.16.23 Installing Prolog packs . 445
5.16.24 Known issues . 445

5.17 ports_profiler . 446
5.17.1 API documentation . 446
5.17.2 Loading . 446
5.17.3 Testing . 446
5.17.4 Compiling source files for port profiling . 446
5.17.5 Generating profiling data . 447
5.17.6 Printing profiling data reports . 447
5.17.7 Interpreting profiling data . 448

ix

5.17.8 Profiling Prolog modules . 449
5.17.9 Profiling plain Prolog code . 449
5.17.10 Known issues . 450

5.18 profiler . 450
5.18.1 Loading . 450
5.18.2 Testing . 450
5.18.3 Supported backend Prolog compilers . 450
5.18.4 Compiling source code for profiling . 451

5.19 tutor . 451
5.19.1 API documentation . 451
5.19.2 Loading . 451
5.19.3 Usage . 451

5.20 wrapper . 452
5.20.1 API documentation . 452
5.20.2 Loading . 452
5.20.3 Workflows . 452
5.20.4 Customization . 452
5.20.5 Current limitations . 453

6 Libraries 455
6.1 Overview . 455

6.1.1 Library documentation . 455
6.1.2 Loading libraries . 455
6.1.3 Testing libraries . 456
6.1.4 Credits . 456
6.1.5 Other notes . 456

6.2 arbitrary . 456
6.2.1 API documentation . 457
6.2.2 Loading . 457
6.2.3 Testing . 457
6.2.4 Usage . 457
6.2.5 Examples . 459
6.2.6 Known issues . 459

6.3 assignvars . 459
6.3.1 API documentation . 459
6.3.2 Loading . 459
6.3.3 Testing . 460

6.4 base64 . 460
6.4.1 API documentation . 460
6.4.2 Loading . 460
6.4.3 Testing . 460
6.4.4 Encoding . 460
6.4.5 Decoding . 461

6.5 basic_types . 461
6.5.1 API documentation . 462
6.5.2 Loading . 462
6.5.3 Testing . 462

6.6 coroutining . 462
6.6.1 API documentation . 462
6.6.2 Loading . 462
6.6.3 Testing . 462

6.7 cbor . 463
6.7.1 Representation . 463
6.7.2 Encoding . 464

x

6.7.3 Decoding . 464
6.7.4 API documentation . 464
6.7.5 Loading . 464
6.7.6 Testing . 464

6.8 core . 464
6.8.1 API documentation . 465
6.8.2 Loading . 465
6.8.3 Testing . 465

6.9 csv . 465
6.9.1 API documentation . 465
6.9.2 Loading . 465
6.9.3 Testing . 466
6.9.4 Usage . 466

6.10 dates . 467
6.10.1 API documentation . 467
6.10.2 Loading . 467

6.11 dependents . 468
6.11.1 API documentation . 468
6.11.2 Loading . 468

6.12 dictionaries . 468
6.12.1 API documentation . 468
6.12.2 Loading . 468
6.12.3 Testing . 468
6.12.4 Usage . 469
6.12.5 Credits . 469

6.13 dif . 470
6.13.1 API documentation . 470
6.13.2 Loading . 470
6.13.3 Testing . 470

6.14 edcg . 470
6.14.1 API documentation . 471
6.14.2 Loading . 471
6.14.3 Testing . 471
6.14.4 Usage . 471
6.14.5 Introduction . 472
6.14.6 Syntax . 472
6.14.7 Declaration of Predicates . 472
6.14.8 Declaration of Accumulators . 473
6.14.9 Declaration of Passed Arguments . 473
6.14.10 Additional documentation . 473

6.15 events . 474
6.15.1 API documentation . 474
6.15.2 Loading . 474

6.16 expand_library_alias_paths . 474
6.16.1 API documentation . 474
6.16.2 Loading . 474
6.16.3 Usage . 474

6.17 expecteds . 475
6.17.1 API documentation . 475
6.17.2 Loading . 475
6.17.3 Testing . 475
6.17.4 Usage . 475
6.17.5 See also . 476

6.18 format . 476

xi

6.18.1 Portability . 476
6.18.2 API documentation . 476
6.18.3 Loading . 476
6.18.4 Testing . 477

6.19 gensym . 477
6.19.1 API documentation . 477
6.19.2 Loading . 477
6.19.3 Testing . 477
6.19.4 Usage . 477

6.20 genint . 477
6.20.1 API documentation . 478
6.20.2 Loading . 478
6.20.3 Testing . 478
6.20.4 Usage . 478

6.21 git . 478
6.21.1 API documentation . 478
6.21.2 Loading . 478
6.21.3 Testing . 479
6.21.4 Usage . 479

6.22 grammars . 480
6.22.1 API documentation . 480
6.22.2 Loading . 480
6.22.3 Testing . 480
6.22.4 Usage . 480

6.23 heaps . 480
6.23.1 API documentation . 481
6.23.2 Loading . 481
6.23.3 Testing . 481
6.23.4 Credits . 481

6.24 hierarchies . 481
6.24.1 API documentation . 481
6.24.2 Loading . 481
6.24.3 Testing . 481

6.25 hook_flows . 482
6.25.1 API documentation . 482
6.25.2 Loading . 482
6.25.3 Testing . 482
6.25.4 Usage . 482

6.26 hook_objects . 483
6.26.1 API documentation . 483
6.26.2 Loading . 483
6.26.3 Testing . 483
6.26.4 Usage . 483

6.27 html . 486
6.27.1 API documentation . 487
6.27.2 Loading . 487
6.27.3 Testing . 487
6.27.4 Generating a HTML document . 487
6.27.5 Generating a HTML fragment . 487
6.27.6 Working with callbacks to generate content . 488
6.27.7 Working with custom elements . 488

6.28 ids . 489
6.28.1 API documentation . 489
6.28.2 Loading . 489

xii

6.28.3 Testing . 489
6.28.4 Usage . 489

6.29 intervals . 490
6.29.1 API documentation . 490
6.29.2 Loading . 490
6.29.3 Testing . 490

6.30 java . 490
6.30.1 API documentation . 491
6.30.2 Loading . 491
6.30.3 Testing . 491
6.30.4 Usage . 491
6.30.5 Known issues . 491

6.31 json . 491
6.31.1 API documentation . 492
6.31.2 Loading . 492
6.31.3 Testing . 492
6.31.4 Representation . 492
6.31.5 Encoding . 494
6.31.6 Decoding . 495
6.31.7 Known issues . 495

6.32 logging . 495
6.32.1 API documentation . 495
6.32.2 Loading . 495

6.33 loops . 495
6.33.1 API documentation . 495
6.33.2 Loading . 496
6.33.3 Testing . 496
6.33.4 Usage . 496

6.34 meta . 496
6.34.1 API documentation . 496
6.34.2 Loading . 496
6.34.3 Testing . 496
6.34.4 Usage . 497

6.35 meta_compiler . 497
6.35.1 API documentation . 497
6.35.2 Loading . 497
6.35.3 Testing . 497
6.35.4 Usage . 497

6.36 nested_dictionaries . 498
6.36.1 API documentation . 498
6.36.2 Loading . 498
6.36.3 Testing . 498
6.36.4 Usage . 498
6.36.5 Curly term representation . 499

6.37 optionals . 499
6.37.1 API documentation . 499
6.37.2 Loading . 499
6.37.3 Testing . 500
6.37.4 Usage . 500
6.37.5 See also . 500

6.38 options . 500
6.38.1 API documentation . 500
6.38.2 Loading . 501
6.38.3 Testing . 501

xiii

6.38.4 Usage . 501
6.39 os . 502

6.39.1 API documentation . 502
6.39.2 Loading . 502
6.39.3 Testing . 502
6.39.4 Known issues . 502

6.40 queues . 503
6.40.1 API documentation . 503
6.40.2 Loading . 503
6.40.3 Testing . 503
6.40.4 Usage . 503

6.41 random . 504
6.41.1 API documentation . 504
6.41.2 Loading . 504
6.41.3 Testing . 504
6.41.4 Usage . 504

6.42 reader . 505
6.42.1 API documentation . 505
6.42.2 Loading . 505
6.42.3 Testing . 505

6.43 redis . 505
6.43.1 API documentation . 505
6.43.2 Loading . 506
6.43.3 Testing . 506
6.43.4 Credits . 506
6.43.5 Known issues . 506

6.44 sets . 506
6.44.1 API documentation . 506
6.44.2 Loading . 507
6.44.3 Testing . 507
6.44.4 Usage . 507
6.44.5 Credits . 508

6.45 statistics . 508
6.45.1 API documentation . 508
6.45.2 Loading . 509
6.45.3 Testing . 509

6.46 term_io . 509
6.46.1 API documentation . 509
6.46.2 Loading . 509
6.46.3 Testing . 509

6.47 timeout . 509
6.47.1 API documentation . 510
6.47.2 Loading . 510
6.47.3 Testing . 510

6.48 types . 510
6.48.1 API documentation . 510
6.48.2 Loading . 510
6.48.3 Testing . 511
6.48.4 Type-checking . 511
6.48.5 Defining new types . 511
6.48.6 Examples . 512

6.49 unicode_data . 512
6.49.1 Authors . 512
6.49.2 License . 512

xiv

6.49.3 Website . 512
6.49.4 Description . 512
6.49.5 Requirements . 513
6.49.6 Usage . 513
6.49.7 Known issues . 513
6.49.8 Acknowledgements . 513
6.49.9 Files and API Summary . 513

6.50 union_find . 518
6.50.1 API documentation . 519
6.50.2 Loading . 519
6.50.3 Testing . 519
6.50.4 Usage . 519

6.51 uuid . 520
6.51.1 API documentation . 520
6.51.2 Loading . 520
6.51.3 Testing . 520
6.51.4 Generating version 1 UUIDs . 520
6.51.5 Generating version 4 UUIDs . 521
6.51.6 Generating the null UUID . 521

6.52 zippers . 522
6.52.1 API documentation . 522
6.52.2 Loading . 522
6.52.3 Testing . 522

7 Glossary 523

Bibliography 533

Index 537

xv

xvi

CHAPTER

ONE

USER MANUAL

1.1 Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means that Logtalk shares key
concepts with other object-oriented programming languages but abstracts and reinterprets these concepts in
the context of declarative logic programming.

The key concepts in declarative object-oriented programming are encapsulation and reuse patterns. Notably,
the concept of mutable state, which is an imperative concept, is not a significant concept in declarative object-
oriented programming. Declarative object-oriented programming concepts can be materialized in both logic
and functional languages. In this section, we focus only in declarative object-oriented logic programming.

The first critical generalization of object-oriented programming concepts is the concept of object itself. What
an object encapsulates depends on the base programming paradigm where we apply object-oriented pro-
gramming concepts. When these concepts are applied to an imperative language, where mutable state and
destructive assignment are central, objects naturally encapsulate and abstract mutable state, providing dis-
ciplined access and modification. When these concepts are applied to a declarative logic language such as
Prolog, objects naturally encapsulate predicates. Therefore, an object can be seen as a theory, expressed by a
set of related predicates. Theories are usually static and thus Logtalk objects are static by default. This con-
trasts with imperative object-oriented languages where usually classes are static and objects are dynamic.
This view of an object as a set of predicates also forgo a distinction between data and procedures that is
central to imperative object-oriented languages but moot in declarative, homoiconic logic languages.

The second critical generalization concerns the relation between objects and other entities such as protocols
(interfaces) and ancestor objects. The idea is that entity relations define reuse patterns and the roles played
by the participating entities. A common reuse pattern is inheritance. In this case, an entity inherits, and
thus reuses, resources from an ancestor entity. In a reuse pattern, each participating entity plays a specific
role. The same entity, however, can play multiple roles depending on its relations with other entities. For
example, an object can play the role of a class for its instances, the role of a subclass for its superclasses, and
the role of an instance for its metaclass. Another common reuse pattern is protocol implementation. In this
case, an object implementing a protocol reuses its predicate declarations by providing an implementation for
those predicates and exposing those predicates to its clients. An essential consequence of this generalization
is that protocols, objects, and categories are first-class entities while e.g. prototype, parent, class, instance,
metaclass, subclass, superclass, or ancestor are just roles that an object can play. Moreover, a language can
provide multiple reuse patterns instead of selecting a set of patterns and supporting this set as a design choice
that excludes other reuse patterns. For example, most imperative object-oriented languages are either class-
based or prototype-based. In contrast, Logtalk naturally supports both classes and prototypes by providing
the corresponding reuse patterns using objects as first-class entities capable of playing multiple roles.

1

The Logtalk Handbook, Release v3.61.0

1.2 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own
object-oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also come from my frustration with Prolog shortcomings for writing large ap-
plications. Eventually this work has led to the Logtalk programming language as its know today. The first
system to use the name Logtalk appeared in February 1995. At that time, Logtalk was mainly an experiment
in computational reflection with a rudimentary runtime and no compiler. Based on feedback by users and
on the author subsequent work, the name was retained and Logtalk as created as a full programming lan-
guage focusing on using object-oriented concepts for code encapsulation and reuse. Development started
on January 1998 with the first public alpha version released in July 1998. The first stable release (2.0) was
published in February 1999. Development of the third generation of Logtalk started in 2012 with the first
public alpha version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.2.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On
one hand, the object orientation allows us to work with the same set of entities in the successive
phases of application development, giving us a way of organizing and encapsulating the knowl-
edge of each entity within a given domain. On the other hand, logic programming allows us
to represent, in a declarative way, the knowledge we have of each entity. Together, these two
advantages allow us to minimize the distance between an application and its problem domain,
turning the writing and maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with the possibility of defining
several namespaces, instead of the traditional Prolog single database, addressing some of the
needs of large software projects.

1.2.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which
takes place at each moment is a result of the observation of occurring events. This integration
complements object-oriented programming, in which each computing is initiated by the explicit
sending of a message to an object. The user dynamically defines what events are to be observed
and establishes monitors for these events. This is specially useful when representing relation-
ships between objects that imply constraints in the state of participating objects [Rumbaugh87],
[Rumbaugh88], [Fornarino_et_al_89], [Razek92]. Other common uses are reflective applica-
tions like code debugging or profiling [Maes87]. Predicates can be implicitly called when a spied
event occurs, allowing programming solutions which minimize object coupling. In addition,
events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.2.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without
any code duplication and irrespective of object hierarchies. A category is a first-class encapsula-
tion entity, at the same level as objects and protocols, which can be used as a component when
building new objects. Thus, objects may be defined through composition of categories, which act
as fine-grained units of code reuse. Categories may also extend existing objects. Categories can
be used to implement mixins and aspects. Categories allows for code reuse between non-related
objects, independent of hierarchy relations, in the same vein as protocols allow for interface
reuse.

1.2.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or
prototype-based [Lieberman86], with a strong predominance of class-based languages. Logtalk
provides support for both hierarchy types. That is, we can have both prototype and class hi-
erarchies in the same application. Prototypes solve a problem of class-based systems where we
sometimes have to define a class that will have only one instance in order to reuse a piece of code.
Classes solves a dual problem in prototype based systems where it is not possible to encapsulate
some code to be reused by other objects but not by the encapsulating object. Stand-alone objects,
that is, objects that do not belong to any hierarchy, are a convenient solution to encapsulate code
that will be reused by several unrelated objects.

1.2.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy_et_al_00] define
a single hierarchy rooted in a class usually named Object. This makes it easy to ensure that
all objects share a common behavior but also tends to result in lengthy hierarchies where it is
difficult to express objects which represent exceptions to default behavior. In Logtalk we can
have multiple, independent, object hierarchies. Some of them can be prototype-based while
others can be class-based. Furthermore, stand-alone objects provide a simple way to encapsulate
utility predicates that do not need or fit in an object hierarchy.

1.2.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming
language. Logtalk provides support for separating interface from implementation in a flexible
way: predicate directives can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and protocols.

1.2.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++
[Stroustrup86], enabling us to restrict the scope of inherited, imported or implemented pred-
icates (by default inheritance is public).

1.2. Main features 3

The Logtalk Handbook, Release v3.61.0

1.2.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in
a way similar to C++ [Stroustrup86]. Private predicates can only be called from the container
object. Protected predicates can be called by the container object or by the container descendants.
Public predicates can be called from any object.

1.2.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize ob-
ject predicates. Parametric objects are implemented in a similar way to L&O [McCabe92], OL(P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to parameter values is done via
a built-in method instead of making the parameters scope global over the whole object). Para-
metric objects allows us to treat any predicate clause as defining an instantiation of a parametric
object. Thus, a parametric object allows us to encapsulate and associate any number of predicates
with a compound term.

1.2.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-
end Prolog compilers, allowing objects to support both synchronous and asynchronous messages.
Logtalk allows programmers to take advantage of modern multi-processor and multi-core com-
puters without bothering with the details of creating and destroying threads, implement thread
communication, or synchronizing threads.

1.2.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an
incremental learning and use of most of its features.

1.2.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in
particular, with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a
modern Prolog compiler.

1.2.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first com-
piled to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore,
Logtalk performance necessarily depends on the backend Prolog compiler. The Logtalk compiler
preserves the programmers choices when writing efficient code that takes advantage of tail re-
cursion and first-argument indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for
matching messages and methods. Furthermore, Logtalk entities (objects, protocols, and cate-
gories) are independently compiled, allowing for a very flexible programming development. En-
tities can be edited, compiled, and loaded at runtime, without necessarily implying recompilation
of all related entities.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

When dynamic binding is used, the Logtalk runtime engine implements caching of message
lookups (including messages to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated section.

1.2.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also ex-
tends them with those areas where object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

Logic and object-oriented programming teaching and researching
Logtalk smooth learning curve, combined with support for both prototype and class-based program-
ming, protocols, components or aspects via category-based composition, and other advanced object-
oriented features allow a smooth introduction to object-oriented programming to people with a back-
ground in Prolog programming. The distribution of Logtalk source code using an open-source license
provides a framework for people to learn and then modify to try out new ideas on object-oriented
programming research. In addition, the Logtalk distribution includes plenty of programming examples
that can be used in the classroom for teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems
Logtalk objects, coupled with event-driven programming features, enable easy implementation of
frame-like systems and similar structured knowledge representations.

Blackboard systems, agent-based systems, and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature
of blackboard type applications.

Highly portable applications
Logtalk is compatible with most modern Prolog systems that support official and de facto standards.
Used as a way to provide Prolog with namespaces, it avoids the porting problems of most Prolog
module systems. Platform, operating system, or compiler specific code can be isolated from the rest of
the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Most Prolog applications that
use modules can be converted into Logtalk applications, improving portability across Prolog systems
and taking advantage of the stronger encapsulation and reuse framework provided by Logtalk object-
oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-
oriented languages like C++, Java, or Smalltalk by facilitating a high-level mapping between the
two languages.

1.2. Main features 5

The Logtalk Handbook, Release v3.61.0

1.3 Nomenclature

Depending on your logic programming and object-oriented programming background (or lack of it), you may
find Logtalk nomenclature either familiar or at odds with the terms used in other languages. In addition,
being a superset of Prolog, terms such as predicate and method are often used interchangeably. Logtalk
inherits most of its nomenclature from Prolog and Smalltalk.

Note that the same terms can have different meanings in different languages. A good example is class. The
support for meta-classes in e.g. Smalltalk translates to a concept of class that is different in key aspects from
the concept of class in e.g. Java or C++. Other terms that can have different meanings are delegation and
forwarding. There are also cases where the same concept is found under different names in some languages
(e.g. self and this) but that can also mean different concepts in Logtalk and other languages. Always be
aware of these differences and be cautious with assumptions carried from other programming languages.

In this section, we map nomenclatures from Prolog and popular OOP languages such as Smalltalk, C++,
Java, and Python to the Logtalk nomenclature. The Logtalk distribution includes several examples of how
to implement common concepts found in other languages, complementing the information in this section.
This Handbook also features a Prolog interoperability section and an extensive glossary providing the exact
meaning of the names commonly used in Logtalk programming.

1.3.1 Prolog nomenclature

Being a superset of Prolog, Logtalk inherits its nomenclature. But Logtalk also aims to fix several Prolog
shortcomings, thus introducing new concepts and refining existing Prolog concepts. Logtalk object-oriented
nature also introduces names and concepts that are not common when discussing logic programming se-
mantics. We mention here the most relevant ones, notably those where semantics or common practice differ.
Further details can be found elsewhere in this Handbook.

arbitrary goals as directives
Although not ISO Prolog Core standard compliant, several Prolog systems accept using arbitrary goal
as directives. This is not supported in Logtalk source files. Always use an initialization/1 directive
to wrap those goals. This ensure that any initialization goals, which often have side-effects, are only
called if the source file is successfully compiled and loaded.

calling a predicate
Sending a message to an object is similar to calling a goal with the difference that the actual predicate
that is called is determined not just by the message term but also by the object receiving the message
and possibly its ancestors. This is also different from calling a Prolog module predicate: a message
may result e.g. in calling a predicate inherited by the object but calling a module predicate requires the
predicate to exist in (or be reexported by) the module.

closed world assumption semantics
Logtalk provides clear closed world assumption semantics: messages or calls for declared but undefined
predicates fail. Messages or calls for unknown (i.e. not declared) predicates throw an error. Crucially,
this semantics apply to both static and dynamic predicates. But in Prolog workarounds are required
to have a static predicate being known by the runtime without it being also defined (so that calling it
would fail instead of throwing a predicate existence error).

compiling and loading source files
Logtalk provides its own built-in predicates for compiling and loading source files. It also provides con-
venient top-level interpreter shorthands for these and other frequent operations. In general, the tra-
ditional Prolog built-in predicates and top-level interpreter shorthands cannot be used to load Logtalk
source files.

debugging
In most (if not all) Prolog systems, debugging support is a built-in feature made available using a

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

set of built-in predicates like trace/0 and spy/1. But in Logtalk the default debugger is a regular
application, implemented using a public reflection API. This means that the debugger must be explicitly
loaded (either automatically from a settings file at startup or from the top-level). It also means that the
debugger can be easily extended or replaced by an alternative application.

directive operators
Some Prolog systems declare directive names as operators (e.g. dynamic, multifile, . . .). This is not
required by the ISO Prolog Core standard. It’s a practice that should be avoided as it makes code
non-portable.

encapsulation
Logtalk enforces encapsulation of object predicates, generating a permission error when a predicate is
not within the scope of the caller. In contrast, most Prolog module systems allow any module predicate
to be called by using explicit qualification, even if not exported. Worse, some Prolog systems also
allow defining clauses for a module predicate outside the module, without declaring the predicate as
multifile, by simply writing clauses with explicit module-qualified heads.

entity loading
When using Prolog modules, use_module/1-2 (or equivalent) directives both load the module files
and declare that the (implicitly or explicitly) imported predicates can be used with implicit module
qualification. But Logtalk separates entity (object, protocol, category, or module) predicate usage
declarations (via uses/1 and uses/2 or its own use_module/1 and use_module/2 directives) from loading
goals (using the logtalk_load/1 and logtalk_load/2 predicates), called using an explicit and disciplined
approach from loader files.

flags scope
The set_logtalk_flag/2 directive is always local to the entity or source file that contains it. Only calls
to the set_logtalk_flag/2 predicate set the global default value for a flag. This distinction is lacking in
Prolog (where directives usually have a global scope) and Prolog modules (where some flags are local
to modules in some systems and global in other systems).

meta-predicate call semantics
Logtalk provides consistent meta-predicate call semantics: meta-arguments are always called in the
meta-predicate calling context. This contrasts with Prolog module meta-predicates where the semantics
of implicitly qualified calls is different from explicitly qualified calls.

operators scope
Operators declared inside an entity (object, protocol, or category) are local to the entity. But operators
defined in a source file but outside and entity are global for compatibility with existing Prolog code.

predicates scope
In plain Prolog, all predicates are visible. In a Prolog module, a predicate can be exported or local. In
Logtalk, a predicate can be public, protected, private, or local.

predicate declaration
Logtalk provides a clear distinction between declaring a predicate and defining a predicate. This is a
fundamental requirement for the concept of protocol (aka interface) in Logtalk: we must be able to
declare a predicate without necessarily defining it. This clear distinction is missing in Prolog and Prolog
modules. Notably, it’s a compiler error for a module to try to export a predicate that it does not define.

predicate loading conflicts
Logtalk does not use predicate import/export semantics. Thus, there are never conflicts when loading
entities (objects, protocols, or categories) that declare the same public predicates. But attempting
to load two Prolog modules that export the same predicate results in a conflict, usually a compilation
error (this is specially problematic when the use_module/1 directive is used; e.g. adding a new exported
predicate can break applications that use the module but not the new predicate).

1.3. Nomenclature 7

The Logtalk Handbook, Release v3.61.0

1.3.2 Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk names. Smalltalk had a signif-
icant influence in the design of Logtalk and thus inherits some of its ideas and nomenclature. The following
list relates the most commonly used Smalltalk terms with their Logtalk counterparts.

abstract class
Similar to Smalltalk, an abstract class is just a class not meant to be instantiated by not understanding
a message to create instances.

assignment statement
Logtalk, as a superset of Prolog, uses logic variables and unification and thus provides no equivalent to
the Smalltalk assignment statement.

block
Logtalk supports lambda expressions and meta-predicates, which can be used to provide similar func-
tionality to Smalltalk blocks.

class
In Logtalk, class is a just a role that an object can play. This is similar to Smalltalk where classes are
also objects.

class method
Class methods in Logtalk are simply instance methods declared and defined in the class metaclass.

class variable
Logtalk objects, which can play the roles of class and instance, encapsulate predicates, not state. Class
variables, which in Smalltalk are really shared instance variables, can be emulated in a class by defining
a predicate locally instead of defining it in the class instances.

inheritance
While Smalltalk only supports single inheritance, Logtalk supports single inheritance, multiple inheri-
tance, and multiple instantiation.

instance
While in Smalltalk every object is an instance of same class, objects in Logtalk can play different roles,
including the role of a prototype where the concepts of instance and class don’t apply. Moreover,
instances can be either created dynamically or defined statically.

instance method
Instance methods in Logtalk are simply predicates declared and defined in a class and thus inherited
by the class instances.

instance variable
Logtalk being a declarative language, objects encapsulate a set of predicates instead of encapsulating
state. But different objects may provide different definitions of the same predicates. Mutable internal
state as in Smalltalk can be emulated by using dynamic predicates.

message
Similar to Smalltalk, a message is a request for an operation, which is interpreted in Logtalk as a logic
query, asking for the construction of a proof that something is true.

message selector
Logtalk uses the predicate template (i.e. the predicate callable term with all its arguments unbound) as
message selector. The actual type of the message arguments is not considered. Like Smalltalk, Logtalk
uses single dispatch on the message receiver.

metaclass
Metaclasses are optional in Logtalk (except for a root class) and can be shared by several classes. When
metaclasses are used, infinite regression is simply avoided by making a class an instance of itself.

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

method
Same as in Smalltalk, a method is the actual code (i.e. predicate definition) that is run to answer a
message. Logtalk uses the words method and predicate interchangeably.

method categories
There is no support in Logtalk for partitioning the methods of an object in different categories. The
Logtalk concept of category (a first-class entity) was, however, partially inspired by Smalltalk method
categories.

object
Unlike Smalltalk, where everything is an object, Logtalk language constructs includes both terms (as in
Prolog representing e.g. numbers and structures) and three first-class entities: objects, protocols, and
categories.

pool variables*
Logtalk, as a superset of Prolog, uses predicates with no distinction between variables and methods.
Categories can be used to share a set of predicate definitions between any number of objects.

protocol
In Smalltalk, an object protocol is the set of messages it understands. The same concept applies in
Logtalk. But Logtalk also supports protocols as first-class entities where a protocol can be implemented
by multiple objects and an object can implement multiple protocols.

self
Logtalk uses the same definition of self found in Smalltalk: the object that received the message being
processed. Note, however, that self is not a keyword in Logtalk but implicit in the (::)/1 message to
self control construct.

subclass
Same definition in Logtalk.

super
As in Smalltalk, the idea of super is to allow calling an inherited predicate (that is usually being
redefined). Note, however, that super is not a keyword in Logtalk, which provides instead a (^^)/1
super call control construct.

superclass
Same definition in Logtalk. But while in Smalltalk a class can only have a single superclass, Logtalk
support for multiple inheritance allows a class to have multiple superclasses.

1.3.3 C++ nomenclature

There are several C++ glossaries available on the Internet. The list that follows relates the most commonly
used C++ terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method
for creating new instances can be considered an abstract class. Moreover, Logtalk supports inter-
faces/protocols, which are often a better way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in

1.3. Nomenclature 9

The Logtalk Handbook, Release v3.61.0

predicate, create_object/4, which can be used as a building block to define more sophisticated object
creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the User Manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same
namespace (Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

static member
Logtalk does not support a static keyword. But the equivalent to static members can be declared in a
class metaclass.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at
runtime.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C++.

virtual member function
There is no virtual keyword in Logtalk. Any inherited or imported predicate can be redefined (either
overridden or specialized). Logtalk can use static binding or dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail
when called (as per closed-world assumption).

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.3.4 Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly
used Java terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its
definition to some descendant subclass.

assertion
There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks
and developer tools.

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

extends
There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with similar meaning. But note that Logtalk objects and categories
declared as implementing a protocol are not required to provide definitions for the declared predicates
(closed-world assumption).

callback method
Logtalk supports event-driven programming, the most common usage context of callback methods.
Callback methods can also be implemented using meta-predicates.

constructor
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, create_object/4, which is often used to define more sophisticated object creation predicates.

final
There is no final keyword in Logtalk. Predicates can always be redeclared and redefined in subclasses
(and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the
method name and number of arguments. Logtalk (and Prolog) are not typed languages in the same
sense as Java.

1.3. Nomenclature 11

The Logtalk Handbook, Release v3.61.0

package
There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories) share a
single namespace. But Logtalk does support a concept of library that allows grouping of entities whose
source files share a common path prefix.

reflection
Logtalk features a white box API supporting structural reflection about entity contents, a black box API
supporting behavioral reflection about object protocols, and an events API for reasoning about messages
exchanged at runtime.

static
There is no static keyword in Logtalk. See the entries below on static method and static variable.

static method
Static methods may be implemented in Logtalk by using a metaclass for the class and defining the static
methods in the metaclass. I.e. static methods are simply instance methods of the class metaclass.

static variable
Static variables are shared instance variables and can simply be both declared and defined in a class.
The built-in database methods can be used to implement destructive updates if necessary by accessing
and updated a single clause of a dynamic predicate stored in the class.

super
Instead of a super keyword, Logtalk provides a super operator and control construct, (^^)/1, for
calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including a synchronized/1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-
predicate or per-predicate-set mutexes.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C++.

1.3.5 Python nomenclature

The list that follows relates the commonly used Python concepts with their Logtalk equivalents.

abstract class
Logtalk uses a different definition of abstract class: a class that does not inherit a method for creating
new instances. Notably, the presence of abstract methods (i.e. predicates that are declared but not
defined) does not make a class abstract.

abstract method
Logtalk uses the term predicate interchangeably with method. Predicates can be declared without being
also defined in an object (or category).

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

dictionary
There is no native, built-in associative data type. But the library provides several implementations of a
dictionary protocol.

12 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

function
The closest equivalent is a predicate defined in user, a pseudo-object for predicates not defined in
regular objects, and thus callable from anywhere without requiring a scope directive.

function object
Predicates calls (goals) can be passed or returned from other predicates and unified with other terms
(e.g. variables).

import path
Logtalk uses the term library to refer to a directory of source files and supports defining aliases (sym-
bolic names) to library paths to abstract the actual locations.

lambda
Logtalk natively supports lambda expressions.

list
Lists are compound terms with native syntax support.

list comprehensions
There is no native, built-in support for list comprehensions. But the standard findall/3 predicate can
be used to construct a list by calling a goal that generates the list elements.

loader
Logtalk uses the term loader to refer to source files whose main or sole purpose is to load other source
files.

loop
There are no native loop control constructs based on a counter. But the library provides implementa-
tions of several loop predicates.

metaclass
Logtalk objects play the role of metaclasses when instantiated by objects that play the role of classes.

method
Logtalk uses the terms method and predicate interchangeably. Predicates can be defined in objects (and
categories). The value of self is implicit unlike in Python where it is the first parameter of any method.

method resolution order
Logtalk uses a depth-first algorithm to lookup method (predicate) declarations and definitions. It’s
possible to use predicate aliases to access predicate declarations and definitions other than the first
ones found by the lookup algorithm.

object
Objects are first-class entities that can play multiple roles, including prototype, class, instance, and
metaclass.

package
Logtalk uses the term library to refer to a directory of source files defining objects, categories, and
protocols.

set
There is no native, built-in set type. But the library provides set implementations.

string
The interpretation of text between double-quotes depends on the double_quotes flag. Depending on
this flag, double-quoted text can be interpreted as a list of characters, a list of character codes, or an
atom. Some backend Prolog compilers allow double-quoted text to be interpreted as a string in the
Python sense.

tuple
Compound terms can be used to represent tuples of any complexity.

1.3. Nomenclature 13

The Logtalk Handbook, Release v3.61.0

variable
Logtalk works with logical variables, which are close to the mathematical concept of variables and
distinct from variables in imperative or imperative-based OOP languages where they are symbolic
names for memory locations. Logical variables can be unified with any term, including other variables.

while loop
The built-in forall/2 predicate implements a generate-and-test loop.

1.4 Messages

Messages allows us to ask an object to prove a goal and must always match a declared predicate within the
scope of the sender object. Note that sending a message is fundamentally different from calling a predicate.
When calling a predicate, the caller decides implicitly which predicate definition will be executed. When
sending a message, it is the receiving object, not the sender, that decides which predicate definition (if any)
will be called to answer the message. The predicate definition that is actually used to answer a message
depends on the relations between the object and its imported categories and ancestor objects (if any). See
the Inheritance section for details on the predicate declaration and predicate definition lookup procedures.

When a message corresponds to a meta-predicate, the meta-arguments are always called in the context of the
object (or category) sending the message.

Logtalk uses nomenclature similar to in other object-oriented programming languages such as Smalltalk.
Therefore, the terms query and message are used interchangeably when referring to a declared predicate
that is part of an object interface. Likewise, the terms predicate and method are used interchangeably when
referring to the predicate definition (inside an object or category) that is called to answer a message.

1.4.1 Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

:- op(600, xfy, ::).
:- op(600, fy, ::).
:- op(600, fy, ^^).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded)
until the end of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these
operator definitions are compatible with the predefined operators in the Prolog ISO standard.

1.4.2 Sending a message to an object

Sending a message to an object is accomplished by using the (::)/2 control construct:

..., Object::Message, ...

The message must match a public predicate declared for the receiving object. The message may also corre-
spond to a protected or private predicate if the sender matches the predicate scope container. If the predicate
is declared but not defined, the message simply fails (as per the closed-world assumption).

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.4.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/1
delegation control construct:

..., [Object::Message],

This control construct can only be used within objects and categories (in the top-level interpreter, the sender
is always the pseudo-object user so using this control construct would be equivalent to use the (::)/2
message sending control construct).

1.4.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has
received the original message. This is done in Logtalk through the (::)/1 control construct:

..., ::Message,

The message must match either a public or protected predicate declared for the receiving object or a private
predicate within the scope of the sender otherwise an error will be thrown. If the message is sent from inside
a category or if we are using private inheritance, then the message may also match a private predicate. Again,
if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This
can be achieved by using the message sending control construct described above. However, for convenience,
Logtalk implements an extended syntax for message sending that may improve program readability in some
cases. This extended syntax uses the (,)/2, (;)/2, and (->)/2 control constructs (plus the (*->)/2 soft-cut
control construct when provided by the backend Prolog compiler). For example, if we wish to send several
messages to the same object, we can write:

| ?- Object::(Message1, Message2, ...).

This is semantically equivalent to:

| ?- Object::Message1, Object::Message2,

This extended syntax may also be used with the (::)/1 message sending control construct.

1.4.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This
functionality, introduced by the Smalltalk language through the super primitive, is available in Logtalk using
the (^^)/1 control construct:

..., ^^Predicate,

Most of the time we will use this control construct by instantiating the pattern:

1.4. Messages 15

The Logtalk Handbook, Release v3.61.0

Predicate :-
..., % do something
^^Predicate, % call inherited definition
... . % do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited
predicate definition. This control construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited predicates to be called with the same
performance of local predicates. As with the message sending control constructs, the (^^)/1 call simply fails
when the predicate is declared but not defined (as per the closed-world assumption).

1.4.7 Message sending and event generation

Assuming the events flag is set to allow for the object (or category) sending a message using the (::)/2 control
construct, two events are generated, one before and one after the message execution. Messages that are sent
using the (::)/1 (message to self) control construct or the (^^)/1 super mechanism described above do not
generate any events. The rationale behind this distinction is that messages to self and super calls are only
used internally in the definition of methods or to execute additional messages with the same target object
(represented by self). In other words, events are only generated when using an object’s public interface; they
cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-
...,
% get self reference
self(Self),
% send a message to self using (::)/2
Self::Message,
... .

If we also need the sender of the message to be other than the object containing the predicate definition, we
can write:

Predicate :-
...,
% send a message to self using (::)/2
% sender will be the pseudo-object user
self(Self),
{Self::Message},
... .

When events are not used, is possible to turn off event generation globally or on a per entity basis by using the
events compiler flag to optimize message sending performance (see the Event-driven programming section
for more details).

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.4.8 Sending a message from a module

Messages can be sent to object from within a Prolog module. Depending on the backend Prolog system and
on the optimize flag being turned on, the messages will use static binding when possible. This optimization
requires the object to be compiled and loaded before the module. Note that the module can be user. This is
usually the case when sending the message from the top-level interpreter. Thus, the same conditions apply
in this case.

Warning: If you want to benchmark the performance of a message sending goal at the top-level inter-
preter, be careful to check first if the goal is pre-compiled to use static binding, otherwise you will also be
benchmarking the Logtalk compiler itself.

1.4.9 Message sending performance

For a detailed discussion on message sending performance, see the Performance section.

1.5 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database
containing all your code, Logtalk objects provide separated namespaces or databases allowing the partition-
ing of code in more manageable parts. Logtalk is a declarative programming language and does not aim to
bring some sort of new dynamic state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.5.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk
uses the term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and
instance always designate an object. Different names are used to emphasize the role played by an object in a
particular context. I.e. we use a term other than object when we want to make the relationship with other
objects explicit. For example, an object with an instantiation relation with other object plays the role of an
instance, while the instantiated object plays the role of a class; an object with a specialization relation with
other object plays the role of a subclass, while the specialized object plays the role of a superclass; an object
with an extension relation with other object plays the role of a prototype, the same for the extended object.
A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled accordingly to the
roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-
based. You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs,
use parametric objects, and take advantage of protocols and categories (think components).

1.5. Objects 17

../../docs/user_0.html#user-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they
share common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually
represent concrete objects in the application domain. When linking prototypes using extension relations,
Logtalk uses the term prototype hierarchies although most authors prefer to use the term hierarchy only with
class generalization/specialization relations. In the context of logic programming, prototypes are often the
ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes often provide an
ideal structuring solution when you want to express hierarchies of abstractions or work with many similar
objects. Classes are used indirectly through instantiation. Contrary to most object-oriented programming
languages, instances can be created both dynamically at runtime or defined in a source file like other objects.
Using classes in requires defining at least one metaclass, as explained below.

1.5.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the object. By default, all Logtalk source files use
the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can be
set to match the needs of a particular Prolog compiler in the corresponding adapter file. For instance, we
may define an object named vehicle and save it in a vehicle.lgt source file which will be compiled to a
vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects,
categories, and protocols share the same name space: we cannot have an object with the same name as a
protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5
and end_object/0. The most simple object will be one that is self-contained, not depending on any other
Logtalk entity:

:- object(Object).
...

:- end_object.

If an object implements one or more protocols then the opening directive will be:

:- object(Object,
implements([Protocol1, Protocol2, ...])).
...

:- end_object.

An object can import one or more categories:

:- object(Object,
imports([Category1, Category2, ...])).

(continues on next page)

18 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

...
:- end_object.

If an object both implements protocols and imports categories then we will write:

:- object(Object,
implements([Protocol1, Protocol2, ...]),
imports([Category1, Category2, ...])).
...

:- end_object.

In object-oriented programming objects are usually organized in hierarchies that enable interface and code
sharing by inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:- object(Prototype,
extends(Parent)).
...

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between ob-
jects. To define an object as a class instance we will write:

:- object(Object,
instantiates(Class)).
...

:- end_object.

A class may specialize another class, its superclass:

:- object(Class,
specializes(Superclass)).
...

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the
following pattern:

:- object(Class,
instantiates(Metaclass),
specializes(Superclass)).
...

:- end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be
prototype-based (defined by extending other objects) or class-based (with instantiation and specialization
relations). An object may also implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other
objects) always plays the role of a prototype, that is, a self-describing object. If we want to use classes and
instances, then we will need to specify at least one instantiation or specialization relation. The best way to
do this is to define a set of objects that provide the basis of a reflective system [Cointe87], [Moura94]. For
example:

1.5. Objects 19

The Logtalk Handbook, Release v3.61.0

% avoid the inevitable unknown entity warnings as in a
% reflective system there will always be references to
% an entity that will be defined after the reference

:- set_logtalk_flag(unknown_entities, silent).

% default root of the inheritance graph
% providing predicates common to all objects

:- object(object,
instantiates(class)).
...

:- end_object.

% default metaclass for all classes providing
% predicates common to all instantiable classes

:- object(class,
instantiates(class),
specializes(abstract_class)).
...

:- end_object.

% default metaclass for all abstract classes
% providing predicates common to all classes

:- object(abstract_class,
instantiates(class),
specializes(object)).
...

:- end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at
the same time, classes and instances of some class. In addition, each object inherits its own predicates and
the predicates of the other two objects without any inheritance loop.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making
an object an instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(class)).
...

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange mes-
sages between all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an
object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

20 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.5.3 Parametric objects

Parametric objects have a compound term as identifier where all the arguments of the compound term are
variables. These variables, the object parameters, can be instantiated when sending or as a consequence of
sending a message to the object, thus acting as object parameters. The object predicates can then be coded
to depend on those parameters, which are logical variables shared by all object predicates. When an object
state is set at object creation and never changed, parameters provide a better solution than using the object’s
database via asserts. Parametric objects can also be used to associate a set of predicates to terms that share
a common functor and arity.

In order to give access to an object parameter, Logtalk provides a parameter/2 built-in local method:

:- object(foo(_Bar, _Baz, ...)).

...
bar(Bar) :-

parameter(1, Bar).

baz :-
parameter(2, Baz),
baz(Baz),
... .

An alternative solution is to use the built-in local method this/1. For example:

:- object(foo(_Bar, _Baz, ...)).

...
baz :-

this(foo(_, Baz, ...)),
baz(Baz),
... .

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled
inline into a clause head unification. The drawback of this second solution is that we must check all calls
of this/1 if we change the object name. Note that we can’t use these method with the message sending
operators ((::)/2, (::)/1, or (^^)/1).

A third alternative to access object parameters is to use parameter variables. Although parameter variables
introduce a concept of entity global variables, their unique syntax, _ParameterName_, avoids conflicts and
makes them easily recognizable. For example:

:- object(foo(_Bar_, _Baz_, ...)).

...
bar(_Bar_).

baz :-
baz(_Baz_),
... .

Note that using parameter variables doesn’t change the fact that entity parameters are logical variables.
Parameter variables simplify code maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

When storing a parametric object in its own source file, the convention is to name the file after the object,

1.5. Objects 21

The Logtalk Handbook, Release v3.61.0

with the object arity appended. For instance, when defining an object named sort(Type), we may save it in
a sort_1.lgt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have
the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object
identifier may act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and
be used to represent different instantiations of a parametric object identifier. Logtalk provides a convenient
notation for accessing proxies represented as Prolog facts when sending a message:

..., {Proxy}::Message, ...

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to
the corresponding parametric object. Typically, the proof allows retrieving of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently instantiated in order to unify with a
single Prolog fact or with a proxy argument that unifies with several facts on backtracking.

1.5.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current_object/1 built-in predicate with a
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;
...

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an
atom or a compound term).

1.5.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound
term, which must not match any existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object(
foo,
[extends(bar)],
[public(foo/1)],
[foo(1), foo(2)]

).

is equivalent to compiling and loading the object:

:- object(foo,
extends(bar)).

(continues on next page)

22 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- dynamic.

:- public(foo/1).
foo(1).
foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object initialization options.

1.5.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

| ?- abolish_object(Object).

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

1.5.7 Object directives

Object directives are used to set initialization goals, define object properties, to document an object depen-
dencies on other Logtalk entities, and to load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the
initialization/1 directive:

:- initialization(Goal).

The argument can be any valid Logtalk goal. For example, a call to a local predicate:

:- object(foo).

:- initialization(init).
:- private(init/0).

init :-
... .

...

:- end_object.

Or a message to another object:

:- object(assembler).

(continues on next page)

1.5. Objects 23

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- initialization(control::start).
...

:- end_object.

Another common initialization goal is a message to self in order to call an inherited or imported predicate.
For example, assuming that we have a monitor category defining a reset/0 predicate, we could write:

:- object(profiler,
imports(monitor)).

:- initialization(::reset).
...

:- end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes
the object that contains the directive. Also note that object initialization does not necessarily mean setting
an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution
of a program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects
are declared by using the dynamic/0 directive in the object source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we can declare and define dynamic
predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to
load a plain Prolog file into an object thus providing a simple way to encapsulate its contents. For example,
assume a cities.pl file defining facts for a city/4 predicate. We could define a wrapper for this database
by writing:

:- object(cities).

:- public(city/4).

:- include(dbs('cities.pl')).
(continues on next page)

24 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- end_object.

The include/1 directive can also be used when creating an object dynamically. For example:

| ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))], []).

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive include short-
ening long object names, working consistently with specific parameterizations of parametric objects, and
simplifying experimenting with different object implementations of the same protocol when using explicit
message sending.

1.5.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relation-
ships that an object may have with other entities.

The instantiates_class/2-3 built-in predicates can be used to query all instantiation relations:

| ?- instantiates_class(Instance, Class).

or, if we also want to know the instantiation scope:

| ?- instantiates_class(Instance, Class, Scope).

Specialization relations can be found by using the specializes_class/2-3 built-in predicates:

| ?- specializes_class(Class, Superclass).

or, if we also want to know the specialization scope:

| ?- specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations using with the extends_object/2-3 built-in predicates:

| ?- extends_object(Object, Parent).

or, if we also want to know the extension scope:

| ?- extends_object(Object, Parent, Scope).

In order to find which objects import which categories we can use the imports_category/2-3 built-in predi-
cates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

1.5. Objects 25

The Logtalk Handbook, Release v3.61.0

To find which objects implements which protocols we can use the implements_protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

| ?- implements_protocol(Object, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Object, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current_object/1 built-in predicate to
ensure that the entity returned is an object and not a category.

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that more than one category may explicitly complement a single object and a single category can
complement several objects.

1.5.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object_property/2:

| ?- object_property(Object, Property).

The following object properties are supported:

static
The object is static

dynamic
The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in
predicate)

built_in
The object is a built-in object (and thus always available)

threaded
The object supports/makes multi-threading calls

file(Path)
Absolute path of the source file defining the object (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the object (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the object definition (if applicable)

context_switching_calls
The object supports context switching calls (i.e. can be used with the (<<)/2 debugging control
construct)

dynamic_declarations
The object supports dynamic declarations of predicates

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

events
Messages sent from the object generate events

source_data
Source data available for the object

complements(Permission)
The object supports complementing categories with the specified permission (allow or restrict)

complements
The object supports complementing categories

public(Resources)
List of public predicates and operators declared by the object

protected(Resources)
List of protected predicates and operators declared by the object

private(Resources)
List of private predicates and operators declared by the object

declares(Predicate, Properties)
List of properties for a predicate declared by the object

defines(Predicate, Properties)
List of properties for a predicate defined by the object

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the object (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being the
begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the object (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the object (Call is either a predicate indicator or a control
construct such as (::)/1-2 or (^^)/1 with a predicate indicator as argument; note that Call may not
be ground in case of a call to a control construct where its argument is only know at runtime; the
properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and Alias
being predicate indicators and Line being the begin line of the predicate clause or directive making the
call)

updates(Predicate, Properties)
List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2 or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control
construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the object at compilation time (includes both user-defined

1.5. Objects 27

The Logtalk Handbook, Release v3.61.0

clauses and auxiliary clauses generated by the compiler or by the expansion hooks but does not in-
clude clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the object at compilation time (includes both user-defined
rules and auxiliary rules generated by the compiler or by the expansion hooks but does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the object at compilation time (does not
include clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the object at compilation time (does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

debugging
The object is compiled in debug mode

module
The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is
:-/1.

Some properties such as line numbers are only available when the object is defined in a source file compiled
with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog compilers
that provide access to the start line of a read term. When such support is not available, the value -1 is
returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.5.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all user predicate definitions not encapsulated in a Logtalk
entity (or a Prolog module for backends supporting a module system). These predicates are assumed to
be implicitly declared public. Messages sent from this pseudo-object, which includes messages sent from
the top-level interpreter, generate events when the default value of the events flag is set to allow. Defining
complementing categories for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-
object user virtually contains all user predicate definitions defined in the module where Logtalk was loaded.

28 Chapter 1. User Manual

../../docs/user_0.html#user-0

The Logtalk Handbook, Release v3.61.0

The built-in object logtalk

The built-in logtalk object provides message printing predicates, question asking predicates, debug and trace
event predicates, predicates for accessing the internal database of loaded files and their properties, and also a
set of low-level utility predicates normally used when defining hook objects. Consult its API documentation
for details.

1.6 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the
same protocol and an object can implement several protocols. Protocols may contain only predicate dec-
larations. In some languages the term interface is used with similar meaning. Logtalk allows predicate
declarations of any scope within protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the
end of this section.

1.6.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the protocol. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example,
we may define a protocol named listp and save it in a listp.lgt source file that will be compiled to a
listp_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Protocol names must be atoms. Objects, categories and protocols share the same namespace: we cannot
have a protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and
end_protocol/0. The most simple protocol will be one that is self-contained, not depending on any other
Logtalk entity:

:- protocol(Protocol).
...

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

:- protocol(Protocol,
extends([Protocol1, Protocol2, ...])).
...

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same function-
ality. Therefore, the only recommended use of protocol extension is when you need both a minimal protocol
and an extended version of the same protocol with additional, convenient predicates.

1.6. Protocols 29

../../docs/logtalk_0.html#logtalk-0
../../docs/monitoring_0.html#monitoring-0
../../docs/expanding_0.html#expanding-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.61.0

1.6.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current_protocol/1 built-in predicate with a
unbound argument:

| ?- current_protocol(Protocol).

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an
atom).

1.6.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in predicate cre-
ate_protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must
not match an existing entity name). The remaining two arguments correspond to the relations described in
the opening protocol directive and to the protocol directives.

For instance, the call:

| ?- create_protocol(ppp, [extends(qqq)], [public([foo/1, bar/1])]).

is equivalent to compiling and loading the protocol:

:- protocol(ppp,
extends(qqq)).

:- dynamic.

:- public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

30 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.6.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during
the execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the dynamic/0 directive in the protocol source code:

:- dynamic.

The directive must precede any predicate directives. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic protocols when these need to
be abolished during program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the Objects section for
an example of using this directive.

1.6.6 Protocol relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a protocol have with other entities.

The extends_protocol/2-3 built-in predicates return all pairs of protocols so that the first one extends the
second:

| ?- extends_protocol(Protocol1, Protocol2).

or, if we also want to know the extension scope:

| ?- extends_protocol(Protocol1, Protocol2, Scope).

To find which objects or categories implement which protocols we can call the implements_protocol/2-3
built-in predicates:

| ?- implements_protocol(ObjectOrCategory, Protocol).

or, if we also want to know the implementation scope:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1
or current_category/1 built-in predicates to identify the kind of entity returned.

1.6. Protocols 31

The Logtalk Handbook, Release v3.61.0

1.6.7 Protocol properties

We can find the properties of defined protocols by calling the protocol_property/2 built-in predicate:

| ?- protocol_property(Protocol, Property).

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/1 built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where it is defined.

The following protocol properties are supported:

static
The protocol is static

dynamic
The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-in
predicate)

built_in
The protocol is a built-in protocol (and thus always available)

source_data
Source data available for the protocol

file(Path)
Absolute path of the source file defining the protocol (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the protocol (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the protocol definition (if applicable)

public(Resources)
List of public predicates and operators declared by the protocol

protected(Resources)
List of protected predicates and operators declared by the protocol

private(Resources)
List of private predicates and operators declared by the protocol

declares(Predicate, Properties)
List of properties for a predicate declared by the protocol

alias(Predicate, Properties)
List of properties for a predicate alias declared by the protocol (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file
compiled with the source_data flag turned on.

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.6.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:- object(Object,
implements(Protocol)).
...

:- end_object.

or, in the case of a category:

:- category(Object,
implements(Protocol)).
...

:- end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and
protected predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

:- object(Object,
implements(private::Protocol)).
...

:- end_object.

or:

:- object(Object,
implements(protected::Protocol)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
implements(public::Protocol)).
...

:- end_object.

The same rules applies to protocols implemented by categories.

1.6. Protocols 33

The Logtalk Handbook, Release v3.61.0

1.6.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

The built-in expanding protocol declares the term_expansion/2 and goal_expansion/2 predicates. See the
description of the hook compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the before/3 and after/3 public event handler predicates. See the
Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the forward/1 user-defined message forwarding handler, which is
automatically called (if defined) by the runtime for any message that the receiving object does not under-
stand. See also the []/1 control construct.

1.7 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories
provide a way to encapsulate a set of related predicate declarations and definitions that do not represent a
complete object and that only make sense when composed with other predicates. Categories may also be
used to break a complex object in functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or class-based hierarchies. This concept of cat-
egories shares some ideas with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins [Moon86]
(without necessarily implying multi-inheritance), and Objective-C categories [Cox86]. Categories may also
complement existing objects, thus providing a hot patching mechanism inspired by the Objective-C categories
functionality.

Logtalk defines a built-in category, core_messages, which is described at the end of this section.

1.7.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the category. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can be set
to match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we may
define a category named documenting and save it in a documenting.lgt source file that will be compiled to a
documenting_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog
files may include a directory hash and a process identifier to prevent file name clashes when embedding
Logtalk applications or running parallel Logtalk processes).

Category names can be atoms or compound terms (when defining parametric categories). Objects, cate-
gories, and protocols share the same name space: we cannot have a category with the same name as an
object or a protocol.

34 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0
../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.61.0

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives:
category/1-4 and end_category/0. The most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

:- category(Category).
...

:- end_category.

If a category implements one or more protocols then the opening directive will be:

:- category(Category,
implements([Protocol1, Protocol2, ...])).
...

:- end_category.

A category may be defined as a composition of other categories by writing:

:- category(Category,
extends([Category1, Category2, ...])).
...

:- end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for
example, when a modified version of a category is needed for importing on several unrelated objects).
The preferred way of composing several categories is by importing them into an object. When a category
overrides a predicate defined in an extended category, the overridden definition can still be called by using
the (^^)/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates.
This restriction applies because a category can be imported by several objects and because we cannot use
the database handling built-in methods with categories (messages can only be sent to objects). However,
categories may contain declarations for dynamic predicates and they can contain predicates which handle
dynamic predicates. For example:

:- category(attributes).

:- public(attribute/2).
:- public(set_attribute/2).
:- public(del_attribute/2).

:- private(attribute_/2).
:- dynamic(attribute_/2).

attribute(Attribute, Value) :-
% called in the context of "self"
::attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "self"
::retractall(attribute_(Attribute, _)),
% assert new clause in "self"
::assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-

(continues on next page)

1.7. Categories 35

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

% retract clause in "self"
::retract(attribute_(Attribute, Value)).

:- end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predi-
cates attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic predicate
contained in the object receiving the corresponding messages (i.e. self). But it’s also possible to define pred-
icates that handle dynamic predicates in the context of this instead of self. For example:

:- category(attributes).

:- public(attribute/2).
:- public(set_attribute/2).
:- public(del_attribute/2).

:- private(attribute_/2).
:- dynamic(attribute_/2).

attribute(Attribute, Value) :-
% call in the context of "this"
attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "this"
retractall(attribute_(Attribute, _)),
% asserts clause in "this"
assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "this"
retract(attribute_(Attribute, Value)).

:- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties
those dynamic predicates to the object importing the category while working in the context of self allows
each object inheriting from the object that imports the category to have its own set of clauses for those
dynamic predicates.

1.7.2 Hot patching

A category may also explicitly complement one or more existing objects, thus providing hot patching func-
tionality inspired by Objective-C categories:

:- category(Category,
complements([Object1, Object2,])).
...

:- end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), re-
place broken predicate definitions, add new predicates, and add protocols and categories to existing objects

36 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

without requiring access or modifications to their source code. Common scenarios are adding logging or
debugging predicates to a set of objects. Complemented objects need to be compiled with the complements
compiler flag set allow (to allow both patching and adding functionality) or restrict (to allow only adding
new functionality). A complementing category takes preference over a previously loaded complementing
category for the same object thus allowing patching a previous patch if necessary.

When replacing a predicate definition, it is possible to call the overriden definition in the object from the new
definition in the category by annoting the goal with the experimental @ prefix operator. This goal annotation
is only valid in the context of a complementing category and for compile time bound goals. As an example,
consider the following object:

:- object(bird).

:- set_logtalk_flag(complements, allow).

:- public(make_sound/0).
make_sound :-

write('Chirp, chirp!'), nl.

:- end_object.

We can use the @ goal annotation to e.g. wrap the original make_sound/0 predicate definition by writing:

:- category(logging,
complements(bird)).

make_sound :-
write('Started making sound...'), nl,
@make_sound,
write('... finished making sound.'), nl.

:- end_category.

After loading the object and the category, calling the make_sound/0 predicate will result in the following
output:

| ?- bird::make_sound.

Started making sound...
Chirp, chirp!
... finished making sound.
yes

Note that super calls from predicates defined in complementing categories lookup inherited definitions as
if the calls were made from the complemented object instead of the category ancestors. This allows more
comprehensive object patching. But it also means that, if you want to patch an object so that it imports a
category that extends another category and uses super calls to access the extended category predicates, you
will need to define a (possibly empty) complementing category that extends the category that you want to
add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category
is that it disables the use of static binding optimizations for messages sent to the complemented object as it
can always be later patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local
callers of the replaced predicate will still call the non-patched version of the predicate. This is a consequence

1.7. Categories 37

The Logtalk Handbook, Release v3.61.0

of the lack of a portable solution at the backend Prolog compiler level for replacing static predicate definitions.

1.7.3 Finding defined categories

We can find, by backtracking, all defined categories by using the current_category/1 built-in predicate with a
unbound argument:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by calling it with a valid category identifier
(an atom or a compound term).

1.7.4 Creating a new category in runtime

A category can be dynamically created at runtime by using the create_category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new category (a Prolog atom, which
must not match with an existing entity name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code contents (directives and clauses).

For example, the call:

| ?- create_category(
ccc,
[implements(ppp)],
[private(bar/1)],
[(foo(X):-bar(X)), bar(1), bar(2)]

).

is equivalent to compiling and loading the category:

:- category(ccc,
implements(ppp)).

:- dynamic.

:- private(bar/1).

foo(X) :-
bar(X).

bar(1).
bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

38 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.7.5 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

1.7.6 Category directives

Category directives are used to define category properties, to document a category dependencies on other
Logtalk entities, and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during
the execution of a program is always dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0 directive in the category source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the Objects section for
an example of using this directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive is to shorten
long object names and to simplify experimenting with different object implementations of the same protocol
when using explicit message sending.

1.7. Categories 39

The Logtalk Handbook, Release v3.61.0

1.7.7 Category relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a category can have with other entities.

The built-in predicates implements_protocol/2-3 and conforms_to_protocol/2-3 allows us to find which cate-
gories implements which protocols:

| ?- implements_protocol(Category, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Category, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current_category/1 built-in predicate
to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category/2-3 built-in predicates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends_category/2-3 built-in predicates:

| ?- extends_category(Category1, Category2).

or, if we also want to know the extension scope:

| ?- extends_category(Category1, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that a category may explicitly complement several objects.

1.7.8 Category properties

We can find the properties of defined categories by calling the built-in predicate category_property/2:

| ?- category_property(Category, Property).

The following category properties are supported:

static
The category is static

dynamic
The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-
in predicate)

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

built_in
The category is a built-in category (and thus always available)

file(Path)
Absolute path of the source file defining the category (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the category (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the category definition (if applicable)

events
Messages sent from the category generate events

source_data
Source data available for the category

public(Resources)
List of public predicates and operators declared by the category

protected(Resources)
List of protected predicates and operators declared by the category

private(Resources)
List of private predicates and operators declared by the category

declares(Predicate, Properties)
List of properties for a predicate declared by the category

defines(Predicate, Properties)
List of properties for a predicate defined by the category

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the category (the properties in-
clude number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the category (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the category (Call is either a predicate indicator or a
control construct such as (::)/1-2 or (^^)/1 with a predicate indicator as argument; note that Call
may not be ground in case of a call to a control construct where its argument is only know at runtime;
the properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and
Alias being predicate indicators and Line being the begin line of the predicate clause or directive
making the call)

updates(Predicate, Properties)
List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2 or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control

1.7. Categories 41

The Logtalk Handbook, Release v3.61.0

construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the category (includes both user-defined clauses and
auxiliary clauses generated by the compiler or by the expansion hooks but does not include clauses
for multifile predicates defined for other entities or clauses for the category own multifile predicates
contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary
rules generated by the compiler or by the expansion hooks but does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the category (does not include clauses for
multifile predicates defined for other entities or clauses for the category own multifile predicates con-
tributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the category (does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

Some properties such as line numbers are only available when the category is defined in a source file com-
piled with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog
compilers that provide access to the start line of a read term. When such support is not available, the value
-1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.7.9 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories.
The syntax is very simple:

:- object(Object,
imports([Category1, Category2, ...])).
...

:- end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates
private we prefix the category’s name with the corresponding keyword:

:- object(Object,
imports(private::Category)).
...

:- end_object.

or:

42 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

:- object(Object,
imports(protected::Category)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).
...

:- end_object.

1.7.10 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call.
Consider the following category:

:- category(output).

:- public(out/1).

out(X) :-
write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing the category by simply sending a message
to self. For example:

:- object(worker,
imports(output)).

...
do(Task) :-

execute(Task, Result),
::out(Result).

...

:- end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descen-
dant object as the predicate definition lookup will start from self.

A direct call to a predicate definition found in an imported category can be made using the (^^)/1 control
construct. For example:

:- object(worker,
imports(output)).

...
do(Task) :-

execute(Task, Result),
^^out(Result).

(continues on next page)

1.7. Categories 43

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

...

:- end_object.

This alternative should only be used when the user knows a priori that the category predicates will not
be specialized or redefined by descendant objects of the object importing the category. Its advantage is
that, when the optimize flag is turned on, the Logtalk compiler will try to optimize the calls by using static
binding. When dynamic binding is used due to e.g. the lack of sufficient information at compilation time, the
performance is similar to calling the category predicate using a message to self (in both cases a predicate
lookup caching mechanism is used).

1.7.11 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term
as the category identifier where all the arguments of the compound term are variables. These variables,
the category parameters, can be accessed by calling the parameter/2 or this/1 built-in local methods in the
category predicate clauses or by using parameter variables. Category parameter values can be defined by the
importing objects. For example:

:- object(speech(Season, Event),
imports([dress(Season), speech(Event)])).
...

:- end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the
this/1 built-in local method from category predicates always access the importing object identifier (and thus
object parameters, not category parameters).

1.7.12 Built-in categories

Logtalk defines a built-in category that is always available for any application.

The built-in category core_messages

The built-in core_messages category provides default translations for all compiler and runtime printed mes-
sages such as warnings and errors. It does not define any public predicates.

1.8 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain
predicate directives. From the point-of-view of a traditional imperative object-oriented language, predicates
allows both object state and object behavior to be represented. Mutable object state can be represented using
dynamic object predicates but should only be used when strictly necessary as it breaks declarative semantics.

44 Chapter 1. User Manual

../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.61.0

1.8.1 Reserved predicate names

For practical and performance reasons, some predicate names have a fixed interpretation. These predicates
are declared in the built-protocols. They are: goal_expansion/2 and term_expansion/2, declared in the ex-
panding protocol; before/3 and after/3, declared in the monitoring protocol; and forward/1, declared in the
forwarding protocol. By default, the compiler prints a warning when a definition for one of these predicates
is found but the reference to the corresponding built-in protocol is missing.

1.8.2 Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and defining a predicate and thus clear
closed-world assumption semantics. Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e. non declared) predicates throw an error. Note that this is a fundamental requirement
for supporting protocols: we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly
declared. A predicate declaration must contain, at least, a scope directive. Other directives may be used to
document the predicate or to ensure proper compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can
be public, protected, private, or local. Public predicates can be called from any object. Protected predicates
can only be called from the container object or from a container descendant. Private predicates can only
be called from the container object. Predicates are local when they are not declared in a scope directive.
Local predicates, like private predicates, can only be called from the container object (or category) but
they are invisible to the reflection built-in methods (current_predicate/1 and predicate_property/2) and to the
message error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

:- public(init/1).

:- protected(valid_init_option/1).

:- private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is
local. Note that we do not need to write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow the Logtalk compiler to generate
optimized code for asserting and retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example,
a private predicate can only be called from an object holding its scope directive. But it can be defined in
descendant objects. A typical example is an object playing the role of a class defining a private (possibly
dynamic) predicate for its descendant instances. Only the class can call (and possibly assert/retract clauses
for) the predicate but its clauses can be found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals and operators. For example:

:- public(url//1).

:- public(op(800, fx, tag)).

1.8. Predicates 45

../../docs/expanding_0.html#expanding-0
../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.61.0

Note that, in the case of operators, the operator definitions don’t become global when the entity containing
the directives is compiled and loaded. This prevents an application breaking when e.g. an updated third-
party library adds new operators. It also allows loading entities that provide conflicting operator definitions.
Here the usual programming idiom is to copy the operator definitions to a uses/2 directive. For example,
the lgtunit tool makes available a '=~='/2 predicate (for approximate float equality) that is intended to be
used as an infix operator:

:- uses(lgtunit, [
op(700, xfx, '=~='), '=~='/2

]).

Thus, in practice, the solution to use library entity operators in client entities is the same for using library
entity predicates with implicit message sending.

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation
modes of those arguments can be documented by using the mode/2 directive. For example:

:- mode(member(?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instanti-
ation mode of each argument. The first four possible values are described in [ISO95]). The remaining two
can also be found in use in some Prolog systems.

+
Argument must be instantiated (but not necessarily ground).

-
Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned
term with the given term).

?
Argument can either be instantiated or free.

@
Argument will not be further instantiated (modified).

++
Argument must be ground.

--
Argument must be unbound. Used mainly when returning an opaque term.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument like in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound,
and list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our
own types that can be either atoms or ground compound terms. See the types library documentation for
details.

The second directive argument documents the number of proofs, but not necessarily distinct solutions, for
the specified mode. As an example, the member(X, [1,1,1,1]) goal have only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate often have different determinism.
The possible values are:

zero
Predicate always fails.

46 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

one
Predicate always succeeds once.

zero_or_one
Predicate either fails or succeeds.

zero_or_more
Predicate has zero or more proofs.

one_or_more
Predicate has one or more proofs.

zero_or_error
Predicate either fails or throws an error (see below).

one_or_error
Predicate either succeeds once or throws an error (see below).

zero_or_one_or_error
Predicate either succeeds once or fails or throws an error (see below).

error
Predicate will throw an error.

Mode declarations can also be used to document that some call modes will throw an error. For instance,
regarding the arg/3 and open/3 ISO Prolog built-in predicates, we may write:

:- mode(arg(-, -, +), error).
:- mode(open(@, @, --), one_or_error).

Note that most predicates have more than one valid mode implying several mode directives. For example,
to document the possible use modes of the atom_concat/3 ISO built-in predicate we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of
my knowledge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The
current Logtalk version simply parses this directive for collecting its information for use in the reflection API
(assuming the source_data flag is turned on). In any case, the use of mode directives is a good starting point
for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted as closures that will be used
for constructing goals. To ensure that these goals will be executed in the correct context (i.e. in the calling
context, not in the meta-predicate definition context) we need to use the meta_predicate/1 directive. For
example:

:- meta_predicate(findall(*, 0, *)).
:- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0
Meta-argument that will be called as a goal.

1.8. Predicates 47

The Logtalk Handbook, Release v3.61.0

N
Meta-argument that will be a closure used to construct a call by extending it with N arguments. The
value of N must be a positive integer.

::
Argument that is context-aware but that will not be called as a goal or a closure. It can contain,
however, sub-terms that will be called as goals or closures.

^
Goal that may be existentially quantified (Vars^Goal).

*
Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to
deal with proprietary built-in meta-predicates and meta-directives:

/
Predicate indicator (Name/Arity), list of predicate indicators, or conjunction of predicate indicators.

//
Non-terminal indicator (Name//Arity), list of predicate indicators, or conjunction of predicate indica-
tors.

[0]
List of goals.

[N]
List of closures.

[/]
List of predicate indicators.

[//]
List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on
Quintus Prolog for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described meta-predicate, even if the meta-predicate declaration is inherited
from another entity, to ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the
predicate discontiguous by using the discontiguous/1 directive:

:- discontiguous(foo/1).

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by
some Prolog compilers.

As each Logtalk entity is compiled independently of other entities, this directive must be included in every
object or category that contains a definition for the described predicate (even if the predicate declaration is
inherited from other entity).

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic
predicate we use the dynamic/1 directive:

:- dynamic(foo/1).

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is
compiled independently from other entities, this directive must be included in every object that contains
a definition for the described predicate (even if the predicate declaration is inherited from other object
or imported from a category). If we omit the dynamic declaration then the predicate definition will be
compiled static. In the case of dynamic objects, static predicates cannot be redefined using the database
built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may
declare and define dynamic predicates.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This means that, if you declare a
public predicate as an operator, you cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply visibility of the operator declaration in the
context of the sender of the message). If you want to declare global operators and, at the same time, use
them inside an entity, just write the corresponding directives at the top of your source file, before the entity
opening directive.

Note that operators can also be declared using a scope directive. Only these operators are visible to the
current_op/3 reflection method.

When the same operators are used on several entities within the same source file, the corresponding direc-
tives must either be repeated in each entity or appear before any entity that uses them. But in the later case,
this results in a global scope for the operators. If you prefer the operators to be local to the source file, just
undefine them at the end of the file. For example:

% before any entity that uses the operator
:- op(400, xfx, results).

...

% after all entities that used the operator
:- op(0, xfx, results).

Global operators can be declared in the application loader file.

1.8. Predicates 49

The Logtalk Handbook, Release v3.61.0

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose
due to all the necessary message sending goals. Consider the following example:

foo :-
...,
findall(X, list::member(X, L), A),
list::append(A, B, C),
list::select(Y, C, R),
...

Logtalk provides a directive, uses/2, which allows us to simplify the code above. One of the usage templates
for this directive is:

:- uses(Object, [
Name1/Arity1, Name2/Arity2, ...

]).

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

:- uses(list, [
append/3, member/2, select/3

]).

foo :-
...,
findall(X, member(X, L), A),
append(A, B, C),
select(Y, C, R),
...

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases
using the notation Predicate as Alias (or the alternative notation Predicate::Alias). For example:

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 direc-
tives or just for giving new names to the predicates that will be more meaningful on their using context. It’s
also possible to define predicate aliases that are also predicate shorthands. For example:

:- uses(pretty_printer, [
indent(4, Term) as indent(Term)

]).

See the directive documentation for details and other examples.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predi-
cates declared in the directive and the predicates defined in the object (or category) containing the directive.
A predicate (or its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2
directive cannot list a predicate (or its alias if defined) which is defined in the object (or category) containing
the directive. Any conflicts are reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates

50 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(and non-terminals). The parameter variable must be instantiated at runtime when the messages are sent.
This feature simplifies experimenting with multiple implementations of the same protocol (for example, to
evaluate the performance of each implementation for a particular case). It also simplifies writing tests that
check multiple implementations of the same protocol.

An object (or category) can make a predicate listed in a uses/2 (or use_module/2) directive part of its
protocol by simply adding a scope directive for the predicate. For example, in the statistics library we
have:

:- public(modes/2).
:- uses(numberlist, [modes/2]).

Therefore, a goal such as sample::modes(Sample, Modes) implicitly calls numberlist::modes(Sample,
Modes) without requiring an explicit local definition for the modes/2 predicate (which would trigger a com-
pilation error).

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inher-
ited or imported grammar rule non-terminal) through the use of the alias/2 directive:

:- alias(Entity, [
Predicate1 as Alias1,
Predicate2 as Alias2,
...

]).

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity
referenced in the opening directive of the entity containing the alias/2 directive. It can be an extended or
implemented protocol, an imported category, an extended prototype, an instantiated class, or a specialized
class. The second argument is a list of pairs of predicate indicators (or grammar rule non-terminal indicators)
using the as infix operator as connector.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to
improve readability. For example:

:- object(square,
extends(rectangle)).

:- alias(rectangle, [width/1 as side/1]).

...

:- end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, only provides an alternative, additional name; the original name
continues to be available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same
name and arity. We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see
the Inheritance section) or we may need to call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked out or conflicting predicates. Consider the following
example:

1.8. Predicates 51

The Logtalk Handbook, Release v3.61.0

:- object(my_data_structure,
extends(list, set)).

:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

...

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member/2 predicate in the object list would be visible on the object my_data_structure, as
a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

% uses list member/2
| ?- my_data_structure::list_member(X, L).

% uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure::member(X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other
object-oriented languages that support multi-inheritance (the most notable example probably being the re-
naming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive
as a result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which
otherwise would be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be
masked by another inherited predicate, while keeping the original name as follows:

:- object(my_data_structure,
extends(list, set)).

:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

member(X, L) :-
^^set_member(X, L).

...

:- end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be
used instead of the one contained in list.

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

:- info(Name/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

:- multifile(Name/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that
should be used with care. It’s commonly used in the definition of hook predicates. Multifile predicates (and
non-terminals) may also be declared dynamic using the same predicate (or non-terminal) notation (multifile
predicates are static by default).

Logtalk precludes using a multifile predicate for breaking object encapsulation by checking that the object
(or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said
to contain the primary declaration for the multifile predicate. Entities containing primary multifile predicate
declarations must always be compiled before entities defining clauses for those multifile predicates. The
Logtalk compiler will print a warning if the scope directive is missing. Note also that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

:- object(main).

:- public(a/1).
:- multifile(a/1).
a(1).

:- end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with
clauses for the multifile predicate. For example:

:- object(other).

:- multifile(main::a/1).
main::a(2).
main::a(X) :-

b(X).

b(3).
b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such as:

1.8. Predicates 53

The Logtalk Handbook, Release v3.61.0

| ?- main::a(X).

X = 1 ;
X = 2 ;
X = 3 ;
X = 4
yes

Note that the order of multifile predicate clauses depend on several factors, including loading order and
compiler implementation details. Therefore, your code should never assume or rely on a specific order of
the multifile predicate clauses.

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or
category defining the clause. This allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the implicit execution context are passed from the
clause head to the clause body. This is necessary to ensure that these values are always valid and to allow
multifile predicate clauses to be defined in categories. A call to the parameter/2 execution context methods,
however, retrieves parameters of the entity defining the clause, not from the entity for which the clause is
defined. The parameters of the entity for which the clause is defined can be accessed by simple unification
at the clause head.

Multifile predicate rules should not contain cuts as these may prevent other clauses for the predicate for
being used by callers. The compiler prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the
object own database instead of the database of the entity holding the multifile predicate primary declaration.
Similarly, local calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause
look for clauses of the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity
defining the clause instead of the entity holding the multifile predicate primary declaration. Local calls
to the current_predicate/1, predicate_property/2, and current_op/3 methods from multifile predicate
clauses defined in an object also lookup predicates and their properties in the object own database instead
of the database of the entity holding the multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

:- coinductive(comember/2).

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with min-
imal support for cyclic terms. The value of the read-only coinduction flag is set to supported for the backend
Prolog compilers providing that support.

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Synchronized directive

A predicate can be declared synchronized by using the synchronized/1 directive. For example:

:- synchronized(write_log_entry/2).
:- synchronized([produce/1, consume/1]).

See the section on synchronized predicates for details.

1.8.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have
four more control structures (the three message sending operators plus the external call operator) to play
with. For example, if we wish to define an object containing common utility list predicates like append/2 or
member/2 we could write something like:

:- object(list).

:- public(append/3).
:- public(member/2).

append([], L, L).
append([H| T], L, [H| T2]) :-

append(T, L, T2).

member(H, [H| _]).
member(H, [_| T]) :-

member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have
written is also valid Prolog code. Calls in a predicate definition body default to the local predicates, unless we
use the message sending operators or the external call operator. This enables easy conversion from Prolog
code to Logtalk objects: we just need to add the necessary encapsulation and scope directives to the old
code.

Category predicates

A category can only contain clauses for static predicates. But there are no restrictions in declaring and calling
dynamic predicates from inside a category. Because a category can be imported by multiple objects, dynamic
predicates must be called either in the context of self , using the message to self control structure, (::)/1, or
in the context of this (i.e. in the context of the object importing the category). For example, if we want to
define a category implementing attributes using the dynamic database of self we could write:

:- category(attributes).

:- public(get/2).
:- public(set/2).

(continues on next page)

1.8. Predicates 55

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- private(attribute_/2).
:- dynamic(attribute_/2).

get(Var, Value) :-
::attribute_(Var, Value).

set(Var, Value) :-
::retractall(attribute_(Var, _)),
::asserta(attribute_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in
the object receiving the messages.

In alternative, if we want a category implementing attributes using the dynamic database of this, we would
write instead:

:- category(attributes).

:- public(get/2).
:- public(set/2).

:- private(attribute_/2).
:- dynamic(attribute_/2).

get(Var, Value) :-
attribute_(Var, Value).

set(Var, Value) :-
retractall(attribute_(Var, _)),
asserta(attribute_(Var, Value).

:- end_category.

In this case, each object importing the category will have its own clauses for the attribute_/2 private
dynamic predicate.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other predicate. A meta-predicate is
declared using the meta_predicate/1 directive as described earlier on this section. When defining a meta-
predicate, the arguments in the clause heads corresponding to the meta-arguments must be variables. All
meta-arguments are called in the context of the object or category calling the meta-predicate. In particular,
when sending a message that corresponds to a meta-predicate, the meta-arguments are called in the context
of the object or category sending the message.

The most simple example is a meta-predicate with a meta-argument that is called as a goal. E.g. the ignore/1
built-in predicate could be defined as:

:- public(ignore/1).
:- meta_predicate(ignore(0)).

(continues on next page)

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

ignore(Goal) :-
(Goal -> true; true).

The 0 in the meta-predicate template tells us that the meta-argument is a goal that will be called by the
meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition
of meta-predicates that are called with closures instead of goals as long as the definition uses the call/1-N
built-in predicate to call the closure with the additional arguments. A classical example is a list mapping
predicate:

:- public(map/2).
:- meta_predicate(map(1, *)).

map(_, []).
map(Closure, [Arg| Args]) :-

call(Closure, Arg),
map(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one
additional argument. When calling a meta-predicate, a closure can correspond to a user-defined predicate,
a built-in predicate, a lambda expression, or a control construct.

In some cases, is not a meta-argument but one of its sub-terms that is called as a goal or used as a closure.
For example:

:- public(call_all/1).
:- meta_predicate(call_all(::)).

call_all([]).
call_all([Goal| Goals]) :-

call(Goal),
call_all(Goals).

The :: mode indicator in the meta-predicate template allows the corresponding argument in the meta-
predicate definiton to be a non-variable term and instructs the compiler to look into the argument sub-terms
for goal and closure meta-variables.

When a meta-predicate calls another meta-predicate, both predicates require meta_predicate/1 directives.
For example, the map/2 meta-predicate defined above is usually implemented by exchanging the argument
order to take advantage of first-argument indexing:

:- meta_predicate(map(1, *)).
map(Closure, List) :-

map_(List, Closure).

:- meta_predicate(map_(*, 1)).
map_([], _).
map_([Head| Tail], Closure) :-

call(Closure, Head),
map_(Tail, Closure).

Note that Logtalk, unlike most Prolog module systems, is not based on a predicate prefixing mechanism.
Thus, the meta-argument calling context is not part of the meta-argument itself.

1.8. Predicates 57

The Logtalk Handbook, Release v3.61.0

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary
predicates for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,Y]>>(Y is 2*X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2*X), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a
lambda expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements.
The lambda parameters are represented by the list [X,Y], which is connected to the lambda goal, (Y is
2*X), by the (>>)/2 operator.

Currying is supported. I.e. it is possible to write a lambda expression whose goal is another lambda expres-
sion. The above example can be rewritten as:

| ?- meta::map([X]>>([Y]>>(Y is 2*X)), [1,2,3], Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda
expression. For example, using GNU Prolog as the backend compiler, we can write:

| ?- meta::map({Z}/[X,Y]>>(Z#=X+Y), [1,2,3], Zs).
Z = _#22(3..268435455)
Zs = [_#3(2..268435454),_#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 for representing the lambda free variables as this representation is often
associated with set representation. Note that the order of the free variables is of no consequence (on the
other hand, a list is used for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example
by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using
SWI-Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,Y]>>(clpfd:(Z#=X+Y)), Xs, Ys).
Xs = [],
Ys = [] ;
Xs = [_G1369],
Ys = [_G1378],
_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],
Ys = [_G1591, _G1594],
_G1582+_G1594#=Z,
_G1579+_G1591#=Z ;
Xs = [_G1789, _G1792, _G1795],

(continues on next page)

58 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

Ys = [_G1804, _G1807, _G1810],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=Z ;
...

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and
the standard operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for
a portable system such as Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the
syntax used in other languages such as OCaml and Haskell to connect lambda parameters with lambda
functions. This syntax was also chosen in order to simplify parsing, error checking, and compilation of
lambda expressions. The full specification of the lambda expression syntax can be found in the the language
grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as
free variables or as lambda parameters. Non-classified variables in a lambda expression should be regarded
as a programming error. The compiler also checks if a variable is classified as both a free variable and a
lambda parameter. There are a few cases where a variable playing a dual role is intended but, in general,
this also results from a programming error. A third check verifies that no lambda parameter variable is used
elsewhere in a clause. Such cases are either programming errors, when the variable appears before the
lambda expression, or bad programming style, when the variable is used after the lambda expression. These
linter warnings are controlled by the lambda_variables flag. Note, however, that the dynamic features of the
language and lack of sufficient information at compile time may prevent the compiler of checking all uses of
lambda expressions.

Warning: Variables listed in lambda parameters must not be shared with other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on the term-expansion mechanism, is
provided as a standard library for practical performance.

Redefining built-in predicates

Logtalk built-in predicates and Prolog built-in predicates can be redefined inside objects and categories.
Although the redefinition of Logtalk built-in predicates should be avoided, the support for redefining Pro-
log built-in predicates is a practical requirement given the different sets of proprietary built-in predicates
provided by backend Prolog systems.

The compiler supports a redefined_built_ins flag, whose default value is silent, that can be set to warning to
alert the user of any redefined Logtalk or Prolog built-in predicate.

The redefinition of Prolog built-in predicates can be combined with the conditional compilation directives
when writing portable applications where some of the supported backends don’t provide a built-in predicate
found in the other backends. As an example, consider the de facto standard list length predicate, length/
2. This predicate is provided as a built-in predicate in most but not all backends. The list library object
includes the code:

:- if(predicate_property(length(_, _), built_in)).

length(List, Length) :-
{length(List, Length)}.

(continues on next page)

1.8. Predicates 59

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- else.

length(List, Length) :-
...

:- endif.

I.e. the object will use the built-in predicate when available. Otherwise, it will use the object provided
predicate definition.

The redefinition of built-in predicates can also be accomplished using predicate shorthands. This can be
useful when porting code while minimizing the changes. For example, assume that existing code uses the
format/2 de facto standard predicate for writing messages. To convert the code to use the message printing
mechanism we could write:

:- uses(logtalk, [
print_message(comment, core, Format+Arguments) as format(Format, Arguments)

]).

process(Crate, Contents) :-
format('Processing crate ~w...', [Crate]),
...,
format('Filing with ~w...', [Contents]),
....

The predicate shorthand instructs the compiler to rewrite all format/2 goals as logtalk::print_message/3
goals, thus allowing us to reuse the code without changes.

1.8.4 Definite clause grammar rules

Definite clause grammar rules (DCGs) provide a convenient notation to represent the rewrite rules common
of most grammars in Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and
categories. Currently, the ISO/IEC WG17 group is working on a draft specification for a definite clause
grammars Prolog standard. Therefore, in the mean time, Logtalk follows the common practice of Prolog
compilers supporting definite clause grammars, extending it to support calling grammar rules contained in
categories and objects. A common example of a definite clause grammar is the definition of a set of rules for
parsing simple arithmetic expressions:

:- object(calculator).

:- public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

(continues on next page)

60 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method,
similar to the predicate with the same name found on most Prolog compilers that support definite clause
grammars. After compiling and loading this object, we can test the grammar rules with calls such as the
following one:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9
yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not
declared. Instead, these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as
shown in the example above. When we want to use the built-in methods phrase/2 and phrase/3, the non-
terminal used as first argument must be within the scope of the sender. For the above example, assuming
that we want the predicate corresponding to the expr//1 non-terminal to be public, the corresponding scope
directive would be:

:- public(expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule
non-terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr/
/1 non-terminal will have a number of arguments equal to one plus the number of additional arguments
necessary for processing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from
categories, or contained in other objects. This is accomplished by using non-terminals as messages. Using a
non-terminal as a message to self allows us to call grammar rules in categories and ancestor objects. To call
grammar rules encapsulated in other objects, we use a non-terminal as a message to those objects. Consider
the following example, containing grammar rules for parsing natural language sentences:

:- object(sentence,
imports(determiners, nouns, verbs)).

:- public(parse/2).

parse(List, true) :-
phrase(sentence, List).

parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.
noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

(continues on next page)

1.8. Predicates 61

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners,
nouns, and verbs. For example:

:- category(determiners).

:- private(determiner//0).

determiner --> [the].
determiner --> [a].

:- end_category.

Along with the message sending operators ((::)/1, (::)/2, and (^^)/1), we may also use other control
constructs such as (\+)/1, !/0, (;)/2, (->)/2, and {}/1 in the body of a grammar. When using a backend
Prolog compiler that supports modules, we may also use the (:)/2 control construct. In addition, grammar
rules may contain meta-calls (a variable taking the place of a non-terminal), which are translated to calls of
the built-in method phrase/3.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when
compiling a clause body goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is converted into a clause. Both
control constructs can be combined in order to call a goal from a grammar rule body, while bypassing at the
same time the Logtalk compiler. Consider the following example:

bar :-
write('bar predicate called'), nl.

:- object(bypass).

:- public(foo//0).

foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal un-
touched, which, in turn, is converted into the goal bar when the clause is compiled. Note that we tested the
bypass::foo//0 non-terminal by calling the phrase/3 built-in method in the context of the logtalk built-in
object. This workaround is necessary due to the Prolog backend implementation of the phrase/3 predicate
no being aware of the Logtalk ::/2 message-sending control construct semantics.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using
the same Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-

62 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

terminals can be documented using the info/2 directive, as in the following example:

:- public(sentence//0).

:- info(sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.']).

1.8.5 Built-in methods

Built-in methods are built-in object and category predicates. These include methods to access message
execution context, to find sets of solutions, to inspect objects, for database handling, for term and goal
expansion, and for printing messages. Some of them are counterparts to standard Prolog built-in predicates
that take into account Logtalk semantics. Similar to Prolog built-in predicates, built-in methods cannot not
be redefined.

Logic and control methods

The !/0, true/0, fail/0, false/0, and repeat/0 standard control constructs and logic predicates are interpreted
as built-in public methods and thus can be used as messages to any object. In practice, they are only used as
messages when sending multiple messages to the same object (see the section on message broadcasting).

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in
the common usage scenarios translated to a single unification performed at compile time with a clause
head context argument. Therefore, they can be freely used without worrying about performance penalties.
When called from inside a category, these methods refer to the execution context of the object importing the
category. These methods are private and cannot be used as messages to objects.

To find the object that received the message under execution we may use the self/1 method. We may also
retrieve the object that has sent the message under execution using the sender/1 method.

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body
is being executed is defined instead of using the name directly. This helps to avoid breaking the code if we
decide to change the object name and forget to change the name references. This method may also be used
from within a category. In this case, the method returns the object importing the category on whose behalf
the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:- object(test).

:- public(test/0).

test :-
this(This),
write('Calling predicate definition in '),
writeq(This), nl,
self(Self),
write('to answer a message received by '),
writeq(Self), nl,
sender(Sender),

(continues on next page)

1.8. Predicates 63

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

write('that was sent by '),
writeq(Sender), nl, nl.

:- end_object.

:- object(descendant,
extends(test)).

:- end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling predicate definition in test
to answer a message received by descendant
that was sent by user
yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the
clause head context arguments at compile time, are effectively removed from the clause body. Therefore, a
clause such as:

predicate(Arg) :-
self(Self),
atom(Arg),
... .

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these context
execution methods do not interfere with the optimizations that some Prolog compilers perform when the first
clause body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter
values (see the section on parametric objects for a detailed description). For example:

:- object(block(_Color)).

:- public(test/0).

test :-
parameter(1, Color),
write('Color parameter value is '),
writeq(Color), nl.

:- end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:- object(block(_Color_)).

:- public(test/0).

(continues on next page)

64 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

test :-
write('Color parameter value is '),
writeq(_Color_), nl.

:- end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is
a variable. When the second argument is bound, the calls are translated to a call to the built-in predicate
arg/3.

When type-checking predicate arguments, it is often useful to include the predicate execution context when
reporting an argument error. The context/1 method provides access to that context. For example, assume
a predicate foo/2 that takes an atom and an integer as arguments. We could type-check the arguments by
writing (using the library type object):

foo(A, N) :-
% type-check arguments
context(Context),
type::check(atom, A, Context),
type::check(integer, N, Context),
% arguments are fine; go ahead
... .

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from Prolog, Logtalk also provides a set of
convenience methods to throw standard error/2 exception terms: instantiation_error/0, uninstantia-
tion_error/1, type_error/2, domain_error/2, existence_error/2, permission_error/3, representation_error/1,
evaluation_error/1, resource_error/1, syntax_error/1, and system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog
predicates: abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always oper-
ate on the database of the object receiving the corresponding message. When called locally, these predicates
take into account any uses/2 or use_module/2 directives that refer to the dynamic predicate being handled.
For example, in the following object, the clauses for the data/1 predicate are retracted and asserted in user
due to the uses/2 directive:

:- object(an_object).

:- uses(user, [data/1]).

:- public(some_predicate/1).
(continues on next page)

1.8. Predicates 65

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

some_predicate(Arg) :-
retractall(data(_)),
assertz(data(Arg)).

:- end_object.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2
convert a grammar rule into a clause that can then be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used
in the implementation of meta-predicates which work with closures instead of goals. In addition, Logtalk
supports the built-in private meta-predicates ignore/1, once/1, and (\+)/1. These methods cannot be used
as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4,
and setof/3. There is also a forall/2 method that implements generate-and-test loops. These methods cannot
be used as messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities
and predicates. Some of the information, however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the trans-
parent box view and the black box view. In the transparent box view, we look into an entity disregarding how
it will be used and returning all information available on it, including predicate declarations and predicate
definitions. This view is supported by the entity property built-in predicates. In the black box view, we
look into an entity from a usage point-of-view using built-in methods for inspecting object operators and
predicates that are within scope from where we are making the call: current_op/3, which returns operator
specifications, predicate_property/2, which returns predicate properties, and current_predicate/1, which en-
ables us to query about user-defined predicate definitions. See below for a more detailed description of these
methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with
definitions similar to the predicates with the same name found on most Prolog compilers that support definite
clause grammars. These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals
takes a closure (which can be a lambda expression) plus zero or more additional arguments and are processed
by appending the input list of tokens and the list of remaining tokens to the arguments.

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.8.6 Predicate properties

We can find the properties of visible predicates by calling the predicate_property/2 built-in method. For
example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations. In the above example, the call
will only return properties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the
built-in methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)
The predicate scope (useful for finding the predicate scope with a single call to predicate_property/2)

public, protected, private
The predicate scope (useful for testing if a predicate have a specific scope)

static, dynamic
All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abol-
ished if it was dynamically declared)

logtalk, prolog, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g. in C)

built_in
The predicate is a built-in predicate

multifile
The predicate is declared multifile (i.e. it can have clauses defined in multiple files or entities)

meta_predicate(Template)
The predicate is declared as a meta-predicate with the specified template

coinductive(Template)
The predicate is declared as a coinductive predicate with the specified template

declared_in(Entity)
The predicate is declared (using a scope directive) in the specified entity

defined_in(Entity)
The predicate definition is looked up in the specified entity (note that this property does not necessarily
imply that clauses for the predicate exist in Entity; the predicate can simply be false as per the closed-
world assumption)

redefined_from(Entity)
The predicate is a redefinition of a predicate definition inherited from the specified entity

non_terminal(NonTerminal//Arity)
The predicate resulted from the compilation of the specified grammar rule non-terminal

alias_of(Predicate)
The predicate (name) is an alias for the specified predicate

alias_declared_in(Entity)
The predicate alias is declared in the specified entity

synchronized
The predicate is declared as synchronized (i.e. it’s a deterministic predicate synchronized using a mutex
when using a backend Prolog compiler supporting a compatible multi-threading implementation)

1.8. Predicates 67

The Logtalk Handbook, Release v3.61.0

Some properties are only available when the entities are defined in source files and when those source files
are compiled with the source_data flag turned on:

inline
The predicate definition is inlined

auxiliary
The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode(Mode, Solutions)
Instantiation, type, and determinism mode for the predicate (which can have multiple modes)

info(ListOfPairs)
Documentation key-value pairs as specified in the user-defined info/2 directive

number_of_clauses(N)
The number of clauses for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N)
The number of rules for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line)
The predicate is declared (using a scope directive) in the specified entity in a source file at the specified
line (if applicable)

defined_in(Entity, Line)
The predicate is defined in the specified entity in a source file at the specified line (if applicable)

redefined_from(Entity, Line)
The predicate is a redefinition of a predicate definition inherited from the specified entity, which is
defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line)
The predicate alias is declared in the specified entity in a source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by
the object, it will be the category name — not the object name — that will be returned by the property
declared_in/1. The same is true for protocol declared predicates.

Some properties such as line numbers are only available when the entity holding the predicates is defined
in a source file compiled with the source_data flag turned on. Moreover, line numbers are only supported
in backend Prolog compilers that provide access to the start line of a read term. When such support is not
available, the value -1 is returned for the start and end lines.

1.8.7 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current_predicate/1 built-in method.
This method takes into account predicate scope declarations. For example, the following call will only return
user predicates that are declared public:

| ?- some_object::current_predicate(Name/Arity).

The predicate property non_terminal/1 may be used to retrieve all grammar rule non-terminals declared for
an object. For example:

68 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

current_non_terminal(Object, Name//Args) :-
Object::current_predicate(Name/Arity),
functor(Predicate, Functor, Arity),
Object::predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely
on this always being true.

1.8.8 Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context of calling Prolog predicates, robustness
requires that the compilation of Logtalk source code must not have accidental dependencies on Prolog code
that happens to be loaded at the time of the compilation. One immediate consequence is that only Prolog
built-in predicates are visible from within objects and categories. But Prolog systems provide a widely di-
verse set of built-in predicates, easily rising portability issues. Relying on non-standard predicates is often
unavoidable, however, due to the narrow scope of Prolog standards. Logtalk applications may also require
calling user-defined Prolog predicates, either in user or in Prolog modules.

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate calls that are not prefixed with a
message sending, super call, or module qualification operator (::, ^^, or :), are compiled to either calls to
local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled as a call to a
local predicate if the object (or category) contains a scope directive, a multifile directive, a dynamic directive,
or a definition for the called predicate. When that is not the case, the compiler checks if the call corresponds
to a Logtalk or Prolog built-in predicate. Consider the following example:

foo :-
...,
write(bar),
...

The call to the write/1 predicate will be compiled as a call to the corresponding Prolog standard built-in
predicate unless the object (or category) containing the above definition also contains a predicate named
write/1 or a directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, we
may run into portability problems while trying your applications with different backend Prolog compilers. We
can use the compiler portability flag to generate warnings for calls to non-standard predicates and arithmetic
functions. We can also help document those calls using the uses/2 directive. For example, a few Prolog
systems provide an atom_string/2 non-standard predicate. We can write (in the object or category calling
the predicate):

:- uses(user, [atom_string/2])

This directive is based on the fact that built-in predicates are visible in plain Prolog (i.e. in user). Besides
helping to document the dependency on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

1.8. Predicates 69

The Logtalk Handbook, Release v3.61.0

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be
used as messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however,
as there is no standard way of checking if a built-in predicate is also a meta-predicate and finding out which
are its meta-arguments. But Logtalk supports overriding the original meta-predicate template when not
programmatically available or usable. For example, assume a det_call/1 Prolog built-in meta-predicate that
takes a goal as argument. We can add to the object (or category) calling it the directive:

:- meta_predicate(user::det_call(0)).

Another solution is to explicitly declare all non-standard built-in Prolog meta-predicates in the corresponding
adapter file using the internal predicate '$lgt_prolog_meta_predicate'/3. For example:

'$lgt_prolog_meta_predicate'(det_call(_), det_call(0), predicate).

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

Calling Prolog foreign predicates

Prolog systems often support defining foreign predicates, i.e. predicates defined using languages other than
Prolog using a foreign language interface. There isn’t, however, any standard for defining, making available,
and recognizing foreign predicates. From a Logtalk perspective, the two most common scenarios are calling
a foreign predicate (from within an object or a category) and making a set of foreign predicates available as
part of an object (or category) protocol. Assuming, as this is the most common case, that foreign predicates
are globally visible once made available (using a Prolog system specific loading or linking procedure), we can
simply call them as user-defined plain predicates, as explained in the next section. When defining an object
(or category) that makes available foreign predicates, the advisable solution is to name the predicates after
the object (or category) and then define object (or category) predicates that call the foreign predicates. Most
backend adapter files include support for recognizing foreign predicates that allows the Logtalk compiler to
inline calls to the predicates (thus avoiding call indirection overheads).

Calling Prolog user-defined plain predicates

User-defined Prolog plain predicates (i.e. predicates that are not defined in a Prolog module) can be called
from within objects or categories by sending the corresponding message to user. For example:

foo :-
...,
user::bar,
...

In alternative, we can use the uses/2 directive and write:

:- uses(user, [bar/0]).

foo :-
...,
bar,
...

70 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated
(either in a Logtalk entity or a Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the {}/1 compiler bypass control con-
struct. For example:

foo :-
...,
{bar},
...

But note that in this case the reflection API will not record the dependency of the foo/0 predicate on the
Prolog bar/0 predicate as we are effectively bypassing the compiler.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For
example:

foo :-
...,
module:bar,
...

You can also use in alternative the use_module/2 directive to call the module predicates using implicit quali-
fication:

:- use_module(module, [bar/0]).

foo :-
...,
bar,
...

Note that the first argument of the use_module/2 directive, when used within an object or a category, is a
module name, not a file specification (also be aware that Prolog modules are sometimes defined in files with
names that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading directive or goal is preferably
done from the application loader file. An advantage of this approach is that it contributes to a clean separation
between loading and using a resource with the loader file being the central point that loads all application
resources (complex applications often use a hierarchy of loader files but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD) Prolog library, which can be
loaded using library(clpfd) as the file specification. In the loader file, we would add:

:- use_module(library(clpfd), []).

Specifying an empty import list is often used to avoid adding the module exported predicates to plain Prolog.
In the objects and categories we can then call the library predicates, using implicit or explicit qualification,
as explained. For example:

:- object(puzzle).

:- public(puzzle/1).

(continues on next page)

1.8. Predicates 71

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- use_module(clpfd, [
all_different/1, ins/2, label/1,
(#=)/2, (#\=)/2,
op(700, xfx, #=), op(700, xfx, #\=)

]).

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=

M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0,
label([M,O,N,E,Y]).

:- end_object.

Warning: The actual module code must be loaded prior to compilation of Logtalk source code that uses
it. In particular, programmers should not expect that the module be auto-loaded (including when using
a backend Prolog compiler that supports an auto-loading mechanism).

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the calls are made.

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates, which can be used in place of
module meta-predicates (e.g. list mapping meta-predicates). If that is not the case, the Logtalk compiler
may need help to understand the module meta-predicate templates. Despite some recent progress in stan-
dardization of the syntax of meta_predicate/1 directives and of the meta_predicate/1 property returned
by the predicate_property/2 reflection predicate, portability is still a major problem. Thus, Logtalk allows
the original meta_predicate/1 directive to be overridden with a local directive that Logtalk can make sense
of. Note that Logtalk is not based on a predicate prefixing mechanism as found in module systems. This
fundamental difference precludes an automated solution at the Logtalk compiler level.

As an example, assume that you want to call from an object (or a category) a module meta-predicate with
the following meta-predicate directive:

:- module(foo, [bar/2]).

:- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second argument of the meta-predicate is
module sensitive but it does not tell us how. Some legacy module libraries and some Prolog systems use : to
mean 0 (i.e. a meta-argument that will be meta-called). Some others use : for meta-arguments that are not
meta-called but that still need to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the directive and correctly compile the
meta-arguments in the meta-predicate call. Therefore, the Logtalk compiler will generate an error stating

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

that : is not a valid meta-argument specifier when trying to compile a foo:bar/2 goal. There are two
alternative solutions for this problem. The advised solution is to override the meta-predicate directive by
writing, inside the object (or category) where the meta-predicate is called:

:- meta_predicate(foo:bar(*, *)).

or:

:- meta_predicate(foo:bar(*, 0)).

depending on the true meaning of the second meta-argument. The second alternative, only usable when
the meta-argument can be handled as a normal argument, is to simply use the {}/1 compiler bypass control
construct to call the meta-predicate as-is:

... :- {foo:bar(..., ...)}, ...

The downside of this alternative is that it hides the dependency on the module library from the reflection
API and thus from the developer tools.

1.8.9 Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be
defined in other modules. This is accomplished by declaring the library predicate multifile and by explicitly
prefixing predicate clause heads with the library module identifier. For example:

:- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

...

Logtalk supports the definition of Prolog module multifile predicates in objects and categories. While the
clause head is compiled as-is, the clause body is compiled in the same way as a regular object or category
predicate, thus allowing calls to local object or category predicates. For example:

:- object(...).

:- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

% calls to local object predicates
...

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates
may also be declared dynamic using the same Module:Name/Arity notation.

1.8. Predicates 73

The Logtalk Handbook, Release v3.61.0

1.8.10 Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an explicitly qualified module argu-
ment. For example:

:- object(...).

:- dynamic(m:bar/1).

foo(X) :-
retractall(m:bar(_)),
assertz(m:bar(X)),
...

:- end_object.

In alternative, we can use use_module/2 directives to declare the module predicates. For example:

:- object(...).

:- use_module(m, [bar/1]).
:- dynamic(m:bar/1).

foo(X) :-
% retract and assert bar/1 clauses in module m
retractall(bar(_)),
assertz(bar(X)),
...

:- end_object.

When the Prolog dynamic predicates are defined in user, the recommended and most portable practice (as
not all backends support a module system) is to use a uses/2 directive:

:- object(...).

:- uses(user, [bar/1]).
:- dynamic(user::bar/1).

foo(X) :-
% retract and assert bar/1 clauses in user
retractall(bar(_)),
assertz(bar(X)),
...

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives, the argument of the database handling
predicates must be know at compile time. If that is not the case, you must use instead either an explicitly-
qualified argument or the {}/1 control construct. For example:

:- object(...).

add(X) :-

(continues on next page)

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

% assert clause X in module m
assertz(m:X),
...

remove(Y) :-
% retract all clauses in user whose head unifies with Y
{retractall(Y)},
...

:- end_object.

1.9 Inheritance

The inheritance mechanisms found on object-oriented programming languages allow the specialization of
previously defined objects, avoiding the unnecessary repetition of code and allowing the definition of com-
mon functionality for sets of objects. In the context of logic programming, we can interpret inheritance as
a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally. Inheritance is not, however, the only mechanism
for theory extension. Logtalk also supports composition using categories.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as
explained below, when a message is sent to an object. The lookup procedures locate the entity holding the
predicate declaration and the entity holding the predicate definition using the predicate name and arity. The
alias/2 predicate directive may be used for defining alternative names for inherited predicates, for solving
inheritance conflicts, and for giving access to all inherited definitions (thus overriding the default lookup
procedure).

The lookup procedures are used when sending a message (using the (::)/2, (::)/1, and []/1 control con-
structs) and when making super calls (using the (^^)/1 control construct). The exact details of the lookup
procedures depend on the role played by the object receiving the message or making the super call, as
explained next. The lookup procedures are also used by the current_predicate/1 and predicate_property/2
reflection predicates.

1.9.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be con-
tained in objects, protocols, or categories. Logtalk supports single and multi-inheritance of protocols: an
object or a category may implement several protocols and a protocol may extend several protocols.

Lookup order for prototype hierarchies

The lookup order for predicate declarations is first the object, second the implemented protocols (and the
protocols that these may extend), third the imported categories (and the protocols that they may implement),
and finally the objects that the object extends (following their declaration order). This lookup is performed
in depth-first order. When an object inherits two different declarations for the same predicate, by default,
only the first one will be considered.

1.9. Inheritance 75

The Logtalk Handbook, Release v3.61.0

Lookup order for class hierarchies

The lookup order for predicate declarations is first the object classes (following their declaration order), sec-
ond the classes implemented protocols (and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and finally the superclasses of the object classes.
This lookup is performed in depth-first order. If the object inherits two different declarations for the same
predicate, by default, only the first one will be considered.

1.9.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in
objects or in categories. Logtalk supports multi-inheritance of implementation: an object may import several
categories or extend, specialize, or instantiate several objects.

Lookup order for prototype hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives).

Lookup order for class hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives) and that the lookup starts
at the instance itself (that received the message) before proceeding, if no predicate definition is found there,
to the instance classes imported categories and then to the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object or an imported category, the
inherited definition is hidden by the new definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the following two objects:

:- object(root).

:- public(bar/1).
bar(root).

:- public(foo/1).
foo(root).

:- end_object.

:- object(descendant,
extends(root)).

foo(descendant).

:- end_object.

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

After compiling and loading these objects, we can check the overriding behavior by trying the following
queries:

| ?- root::(bar(Bar), foo(Foo)).

Bar = root
Foo = root
yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly code other behaviors. Some examples follow.

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition calls the inherited definition and makes additional
calls. This is accomplished by calling the (^^)/1 super call operator in the new definition. For example,
assume a init/0 predicate that must account for object specific initializations along the inheritance chain:

:- object(root).

:- public(init/0).

init :-
write('root init'), nl.

:- end_object.

:- object(descendant,
extends(root)).

init :-
write('descendant init'), nl,
^^init.

:- end_object.

| ?- descendant::init.

descendant init
root init
yes

1.9. Inheritance 77

The Logtalk Handbook, Release v3.61.0

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order
being defined by the inheritance mechanisms. This can be accomplished by writing a clause that just calls,
using the (^^)/1 super call operator, the inherited definitions. The relative position of this clause among
the other definition clauses sets the calling order for the local and inherited definitions. For example:

:- object(root).

:- public(foo/1).

foo(1).
foo(2).

:- end_object.

:- object(descendant,
extends(root)).

foo(3).
foo(Foo) :-

^^foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo = 1 ;
Foo = 2 ;
no

Selective inheritance of predicate definitions

The selective inheritance of predicate definitions (also known as differential inheritance) is normally used in
the representation of exceptions to inherited default definitions. We can use the (^^)/1 super call operator
to test and possibly reject some of the inherited definitions. A common example is representing flightless
birds:

:- object(bird).

:- public(mode/1).

mode(walks).
mode(flies).

:- end_object.

:- object(penguin,
extends(bird)).

(continues on next page)

78 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

mode(swims).
mode(Mode) :-

^^mode(Mode),
Mode \== flies.

:- end_object.

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

1.9.3 Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or ancestor objects
protected predicates or to make all public and protected predicates private predicates we prefix the entity’s
name with the corresponding keyword. For example:

:- object(Object,
implements(private::Protocol)).

% all the Protocol public and protected
% predicates become private predicates
% for the Object clients

...

:- end_object.

or:

:- object(Class,
specializes(protected::Superclass)).

% all the Superclass public predicates become
% protected predicates for the Class clients

...

:- end_object.

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:- object(Object,
imports(public::Category)).

...

:- end_object.

1.9. Inheritance 79

The Logtalk Handbook, Release v3.61.0

This is the same as:

:- object(Object,
imports(Category)).

...

:- end_object.

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when pro-
tected or private inheritance are not used.

1.9.4 Multiple inheritance

Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize more than one
object. Likewise, a protocol may extends multiple protocols and a category may extend multiple categories.
In this case, the depth-first lookup algorithms described above traverse the list of entities per relation from
left to right. Consider as an example the following object opening directive:

:- object(foo,
extends((bar, baz))).

The lookup procedure will look first into the parent object bar and its related entities before looking into the
parent object baz. The alias/2 predicate directive can always be used to solve multi-inheritance conflicts.
It should also be noted that the multi-inheritance support does not affect performance when we use single-
inheritance.

1.9.5 Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless de-
bate on single versus multiple inheritance. The single inheritance mechanism can be implemented efficiently
but it imposes several limitations on reusing, even if the multiple characteristics we intend to inherit are or-
thogonal. On the other hand, the multiple inheritance mechanisms are attractive in their apparent capability
of modeling complex situations. However, they include a potential for conflict between inherited definitions
whose variety does not allow a single and satisfactory solution for all the cases.

No solution that we might consider satisfactory for all the problems presented by the multiple inheritance
mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy
like [McCabe92] or [Moss94] and to the sophisticated algorithms of CLOS [Bobrow_et_al_88], there is no
adequate solution for all the situations. Besides, the use of multiple inheritance carries some complex prob-
lems in the domain of software engineering, particularly in the reuse and maintenance of the applications.
All these problems are substantially reduced if we preferably use in our software development composition
mechanisms instead of specialization mechanisms [Taenzer89]. Multiple inheritance is best used as an anal-
ysis and project abstraction, rather than as an implementation technique [Shan_et_al_93]. Note that Logtalk
provides first-class support for composition using categories.

80 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.10 Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura94] is based on a simple
but powerful idea:

The computations must result, not only from message sending, but also from the observation of
message sending.

The need to associate computations to the occurrence of events was very early recognized in knowl-
edge representation languages, programming languages [Stefik_et_al_86], [Moon86], operative systems
[Tanenbaum87], and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the fol-
lowing goals:

• Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an
object observes another object, that means that it should depend only on the public protocol of the
object observed and not on the implementation of that protocol.

• Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects
in complement to the reflective information on object predicates and relations.

• Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the
events compiler flag. The pre- and post-conditions may be defined in the same object containing the
methods or distributed between several objects acting as method monitors.

• Provide a publish-subscribe mechanism where public messages play the role of events.

1.10.1 Definitions

The words event and monitor have multiple meanings in computer science. To avoid misunderstandings, we
start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural
to declare that the only event that can occur in this kind of system is precisely the sending of a message. An
event can thus be represented by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the
return of the control to the object that has sent the message as two distinct events. This distinction allows us
to have a more precise control over a system dynamic behavior. In Logtalk, these two types of events have
been named before and after, respectively for sending a message and for returning of control to the sender.
Therefore, we refine our event representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

Independence between the two types of events
We can choose to watch only one event type or to process each one of the events associated to a
message sending in an independent way.

All events are automatically generated by the message sending mechanism
The task of generating events is transparently accomplished by the message sending mechanism. The
user only needs to define the events that will be monitored.

The events watched at any moment can be dynamically changed during program execution
The notion of event allows the user not only to have the possibility of observing, but also of controlling
and modifying an application behavior, namely by dynamically changing the observed events during

1.10. Event-driven programming 81

The Logtalk Handbook, Release v3.61.0

program execution. It is our goal to provide the user with the possibility of modeling the largest
number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically
notified by the message sending mechanism whenever a registered event occurs. Any object that defines the
event-handling predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following properties:

Any object can act as a monitor
The monitor status is a role that any object can perform during its existence. The minimum protocol
necessary is declared in the built-in monitoring protocol. Strictly speaking, the reference to this proto-
col is only needed when specializing event handlers. Nevertheless, it is considered good programming
practice to always refer the protocol when defining event handlers.

Unlimited number of monitors for each event
Several monitors can observe the same event because of distinct reasons. Therefore, the number of
monitors per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed in runtime
This property does not imply that an object must be dynamic to act as a monitor (the monitor status of
an object is not stored in the object).

Event handlers cannot modify the event arguments
Notably, if the message contains unbound variables, these cannot be bound by the calls to the monitor
event handlers.

1.10.2 Event generation

Assuming that the events flag is set to allow for the object (or category) sending the messages we want to
observe, for each message that is sent using the (::)/2 control construct, the runtime system automatically
generates two events. The first — before event — is generated when the message is sent. The second — after
event — is generated after the message has successfully been executed.

Note that self messages (using the (::)/1 control construct) or super calls (using the (^^)/1 control con-
struct) don’t generate events.

1.10.3 Communicating events to monitors

Whenever a spied event occurs, the message sending mechanism calls the corresponding event handlers
directly for all registered monitors. These calls are internally made bypassing the message sending primitives
in order to avoid potential endless loops. The event handlers consist in user definitions for the public
predicates declared in the built-in monitoring protocol (see below for more details).

82 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0
../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

1.10.4 Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages.
On the other hand, for each message that has been sent, the system must verify if its respective event is
monitored. Whenever possible, this verification should be performed in constant time and independently of
the number of monitored events. The events representation takes advantage of the first argument indexing
performed by most Prolog compilers, which ensure — in the general case — access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the events compiler flag. With
event-support turned off, Logtalk uses optimized code for processing message sending calls that skips the
checking of monitored events, resulting in a small but measurable performance improvement.

1.10.5 Monitor semantics

The established semantics for monitors actions consists on considering its success as a necessary condition
so that a message can succeed:

• All actions associated to events of type before must succeed, so that the message processing can start.

• All actions associated to events of type after also have to succeed so that the message itself succeeds.
The failure of any action associated to an event of type after forces backtracking over the message
execution (the failure of a monitor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent presence of monitors in a message
processing, we just have to define the monitor actions in such a way that they never fail (which is very
simple to accomplish).

1.10.6 Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not inter-
fere with the result. However, this is not always possible. In the case of an event of type before, the failure
of a monitor prevents a message from being sent and prevents the execution of the remaining monitors. In
case of an event of type after, a monitor failure will force backtracking over message execution. Differ-
ent orders of monitor activation can therefore lead to different results if the monitor actions imply object
modifications unrecoverable in case of backtracking. Therefore, the order for monitor activation should be
assumed as arbitrary. In effect, to assume or to try to impose a specific sequence requires a global knowledge
of an application dynamics, which is not always possible. Furthermore, that knowledge can reveal itself as
incorrect if there is any changing in the execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over the actions previously executed.

1.10.7 Event handling

Logtalk provides three built-in predicates for event handling. These predicates support defining, enumerat-
ing, and abolishing events. Applications that use events extensively usually define a set of objects that use
these built-in predicates to implement more sophisticated and higher-level behavior.

1.10. Event-driven programming 83

The Logtalk Handbook, Release v3.61.0

Defining new events

New events can be defined using the define_events/5 built-in predicate:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free
variables, this call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the current_event/5 built-in predicate:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free
variables or contain free variables.

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically
called to handle before and after events. Any object that plays the role of monitor must define one or both
of these event handler methods:

before(Object, Message, Sender) :-
... .

after(Object, Message, Sender) :-
... .

The arguments in both methods are instantiated by the message sending mechanism when a monitored event
occurs. For example, assume that we want to define a monitor called tracer that will track any message
sent to an object by printing a describing text to the standard output. Its definition could be something like:

:- object(tracer,
% built-in protocol for event handler methods
implements(monitoring)).

before(Object, Message, Sender) :-
write('call: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

after(Object, Message, Sender) :-

(continues on next page)

84 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

write('exit: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

:- end_object.

Assume that we also have the following object:

:- object(any).

:- public(bar/1).
bar(bar).

:- public(foo/1).
foo(foo).

:- end_object.

After compiling and loading both objects and setting the events flag to allow, we can start tracing every
message sent to any object by calling the define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).

yes

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent from user to any object will be traced to the standard output stream:

| ?- any::bar(X).

call: any <-- bar(X) from user
exit: any <-- bar(bar) from user
X = bar

yes

To stop tracing, we can use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private
implementation of the protocol may be used in order to change the scope of the event handler predicates.
Note that the message sending processing mechanism is able to call the event handlers irrespective of their
scope. Nevertheless, the scope of the event handlers may be restricted in order to prevent other objects from
calling them.

The pseudo-object user can also act as a monitor. This object expects the before/3 and after/3 predicates to
be defined in the plain Prolog database. To avoid predicate existence errors when setting user as a monitor,

1.10. Event-driven programming 85

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

this object declares the predicates multifile. Thus, any plain Prolog code defining the predicates should
include the directives:

:- multifile(before/3).
:- multifile(after/3).

1.11 Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers.
Logtalk makes use of the low-level Prolog built-in predicates that implement message queues and interface
with POSIX threads and mutexes (or a suitable emulation), providing a small set of high-level predicates and
directives that allows programmers to easily take advantage of modern multi-processor and multi-core com-
puters without worrying about the tricky details of creating, synchronizing, or communicating with threads,
mutexes, and message queues. Logtalk multi-threading programming integrates with object-oriented pro-
gramming providing a threaded engines API, enabling objects and categories to prove goals concurrently, and
supporting synchronous and asynchronous messages.

1.11.1 Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of sup-
ported compilers by setting the read-only threads compiler flag to supported.

1.11.2 Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

:- threaded.

1.11.3 Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where
you simply want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/1 built-in
predicate. The remaining predicates allow for fine-grained control, including postponing retrieving of thread
goal results at a later time, supporting non-deterministic thread goals, and making one-way asynchronous
calls. Together, these predicates provide high-level support for multi-threading programming, covering most
common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/1. Each goal in
the set runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-
parallelism. For example, assume that we want to find all the prime numbers in a given interval, [N, M].
We can split the interval in two parts and then span two threads to compute the prime numbers in each
sub-interval:

86 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

prime_numbers(N, M, Primes) :-
M > N,
N1 is N + (M - N) // 2,
N2 is N1 + 1,
threaded((

prime_numbers(N2, M, [], Acc),
prime_numbers(N, N1, Acc, Primes)

)).

prime_numbers(N, M, Acc, Primes) :-
...

The threaded/1 call terminates when the two implicit threads terminate. In a computer with two or more
processors (or with a processor with two or more cores) the code above can be expected to provide better
computation times when compared with single-threaded code for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism,
here reinterpreted as a set of goals competing to find a solution. For example, consider the different methods
that we can use to find the roots of real functions. Depending on the function, some methods will faster than
others. Some methods will converge into the solution while others may diverge and never find it. We can
try all the methods simultaneously by writing:

find_root(Function, A, B, Error, Zero) :-
threaded((

bisection::find_root(Function, A, B, Error, Zero)
; newton::find_root(Function, A, B, Error, Zero)
; muller::find_root(Function, A, B, Error, Zero)
)).

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root,
leading to the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent deterministic computations where
the computational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the threaded_call/1-2 built-in predicate
. Calls to this predicate are always true and return immediately (assuming a callable argument). The term
representing the goal is copied, not shared with the thread. The thread computes the first solution to the
goal, posts it to the implicit message queue of the object from where the threaded_call/1 predicate was
called, and suspends waiting for either a request for an alternative solution or for the program to commit to
the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the
threaded_exit/1-2 built-in predicate within the same object where the call to the threaded_call/1 predi-
cate was made. The threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls
are sent back to the object message queue.

The threaded_exit/1 predicate allow us to retrieve alternative solutions through backtracking (if you want
to commit to the first solution, you may use the threaded_once/1-2 predicate instead of the threaded_call/1
predicate). For example, assuming a lists object implementing the usual member/2 predicate, we could
write:

1.11. Multi-threading programming 87

The Logtalk Handbook, Release v3.61.0

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189
yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

X = 1 ;
X = 2 ;
X = 3 ;
no

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user.
The implicit thread running the lists::member/2 goal suspends itself after providing a solution, waiting for
a request to an alternative solution; the thread is automatically terminated when the runtime engine detects
that backtracking to the threaded_exit/1 call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the object message queue receives the reply to
the asynchronous call. The predicate threaded_peek/1-2 may be used to check if a reply is already available
without removing it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immedi-
ately without blocking the caller. However, keep in mind that repeated use of this predicate is equivalent to
polling a message queue, which may hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions
have been found (and the thread generating them is therefore terminated), re-calling the predicate will
generate an exception. Note that failing instead of throwing an exception is not an acceptable solution as it
could be misinterpreted as a failure of the threaded_call/1 argument.

The example on the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

prime_numbers(N, M, Primes) :-
M > N,
N1 is N + (M - N) // 2,
N2 is N1 + 1,
threaded_call(prime_numbers(N2, M, [], Acc)),
threaded_call(prime_numbers(N, N1, Acc, Primes)),
threaded_exit(prime_numbers(N2, M, [], Acc)),
threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-
...

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding
threaded_call/1 call is established using unification. If there are multiple threaded_call/1 calls for a
matching threaded_exit/1 call, the connection can potentially be established with any of them (this is
akin to what happens with tabling). Nevertheless, you can easily use a call tag by using in alternative
threaded_call/2, threaded_once/2, and threaded_exit/2 built-in predicates. For example:

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 1
yes

(continues on next page)

88 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 2
yes

?- threaded_exit(member(X, [1,2,3]), 2).

X = 1 ;
X = 2 ;
X = 3
yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.
Tagged asynchronous calls can be canceled by using the threaded_cancel/1 predicate.

1.11.4 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accom-
plished by using the built-in predicate threaded_ignore/1. For example, assume that we are developing a
multi-agent application where an agent may send an “happy birthday” message to another agent. We could
write:

..., threaded_ignore(agent::happy_birthday), ...

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the
object making the call. Note that this predicate implicitly performs a deterministic call of its argument.

1.11.5 Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side
effects such as input/output operations or modifications to an object database. For example, if a new thread
is started with the same goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures. In order to solve this problem, predicates (and grammar
rule non-terminals) with side effects can be declared as synchronized by using the synchronized/1 predicate
directive. Proving a query to a synchronized predicate (or synchronized non-terminal) is internally protected
by a mutex, thus allowing for easy thread synchronization. For example:

% ensure thread synchronization
:- synchronized(db_update/1).

db_update(Update) :-
% predicate with side-effects
...

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers
in a given interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)),
threaded_call(obj::even_numbers(1,100)).

(continues on next page)

1.11. Multi-threading programming 89

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

1 3 2 4 6 8 5 7 10 ...
...

will most likely result in a mixed up output. By declaring the odd_numbers/2 and even_numbers/2 predicates
synchronized:

:- synchronized([
odd_numbers/2,
even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)),
threaded_ignore(obj::even_numbers(1,99)).

1 3 5 7 9 11 ...
...
2 4 6 8 10 12 ...
...

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from
different objects. Using the same synchronized directive for a set of predicates imply that they all use the
same mutex, as required for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described predicate, even if the predicate declaration is inherited from
another entity, in order to ensure proper compilation. Note that a synchronized predicate cannot be declared
dynamic. To ensure atomic updates of a dynamic predicate, declare as synchronized the predicate performing
the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading
aware. For example, assume a log object defining a write_log_entry/2 predicate that writes log entries to a
file, thus using side effects on its implementation. We can specify and define e.g. a sync_write_log_entry/2
predicate as follows:

:- synchronized(sync_write_log_entry/2).

sync_write_log_entry(File, Entry) :-
log::write_log_entry(File, Entry).

and then call the sync_write_log_entry/2 predicate instead of the write_log_entry/2 predicate from multi-
threaded code.

The synchronization directive may be used when defining objects that may be reused in both single-threaded
and multi-threaded Logtalk applications. The directive simply make calls to the synchronized predicates
deterministic when the objects are used in a single-threaded application.

90 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.11.6 Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time
by different threads. Sometimes we need to suspend a thread not on a synchronization lock but on some
condition that must hold true for a thread goal to proceed. I.e. we want a thread goal to be suspended
until a condition becomes true instead of simply failing. The built-in predicate threaded_wait/1 allows us
to suspend a predicate execution (running in its own thread) until a notification is received. Notifications
are posted using the built-in predicate threaded_notify/1. A notification is a Prolog term that a programmer
chooses to represent some condition becoming true. Any Prolog term can be used as a notification argument
for these predicates. Related calls to the threaded_wait/1 and threaded_notify/1 must be made within the
same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single
threaded_wait/1 predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be
taken to avoid deadlocks when two (or more) threads both wait and post notifications to each other.

1.11.7 Threaded engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections.
An engine is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine
also supports a term queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded_engine_create/3 built-in predicate. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).
yes

The first argument is an answer template to be used for retrieving solution bindings. The user can name
the engine, as in this example where the atom worker is used, or have the runtime generate a name, which
should be treated as an opaque term.

Engines are scoped by the object within which the threaded_engine_create/3 call takes place. Thus, differ-
ent objects can create engines with the same names with no conflicts. Moreover, engines share the visible
predicates of the object creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved.
Solutions can be retrieved one at a time using the threaded_engine_next/2 built-in predicate:

| ?- threaded_engine_next(worker, X).
X = 1
yes

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution,
this predicate signals the engine to start computing the next one. Note that this predicate is deterministic.
In contrast with the threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the
predicate again instead of by backtracking into its call. For example:

collect_all(Engine, [Answer| Answers]) :-
threaded_engine_next(Engine, Answer),
!,
collect_all(Engine, Answers).

collect_all(_, []).

There is also a reified alternative version of the predicate, threaded_engine_next_reified/2, which returns
the(Answer), no, and exception(Error) terms as answers. Using this predicate, collecting all solutions to an
engine uses a different programming pattern:

1.11. Multi-threading programming 91

The Logtalk Handbook, Release v3.61.0

... :-
...,
threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers),
...

collect_all_reified(no, _, []).
collect_all_reified(the(Answer), Engine, [Answer| Answers]) :-

threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers).

Engines must be explicitly terminated using the threaded_engine_destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to
retrieve a task to be performed. For example, assume we define the following predicate:

loop :-
threaded_engine_fetch(Task),
handle(Task),
loop.

The threaded_engine_fetch/1 built-in predicate fetches a task for the engine term queue. The engine clients
would use the threaded_engine_post/2 built-in predicate to post tasks into the engine term queue. The engine
would be created using the call:

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded_engine_yield/1 built-in pred-
icate to make the task results available for consumption using the threaded_engine_next/2 and
threaded_engine_next_reified/2 built-in predicates. Blocking semantics are used by these two predi-
cates: the threaded_engine_yield/1 predicate blocks until the returned solution is consumed while the
threaded_engine_next/2 predicate blocks until a solution becomes available.

1.11.8 Multi-threading performance

The performance of multi-threading applications is highly dependent on the backend Prolog compiler, on the
operating-system, and on the use of dynamic binding and dynamic predicates. All compatible backend Prolog
compilers that support multi-threading features make use of POSIX threads or pthreads. The performance of
the underlying pthreads implementation can exhibit significant differences between operating systems. An
important point is synchronized access to dynamic predicates. As different threads may try to simultaneously
access and update dynamic predicates, these operations may used a lock-free algorithm or be protected by a
lock, usually implemented using a mutex. In the latter case, poor mutex lock operating-system performance,
combined with a large number of collisions by several threads trying to acquire the same lock, can result
in severe performance penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic
binding.

92 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.12 Error handling

Error handling is accomplished in Logtalk by using the standard catch/3 and throw/1 predicates [ISO95]
together with a set of built-in methods that simplify generating errors decorated with expected context.

Errors thrown by Logtalk have, whenever possible, the following format:

error(Error, logtalk(Goal, ExecutionContext))

In this exception term, Goal is the goal that triggered the error Error and ExecutionContext is the context
in which Goal is called. For example:

error(
permission_error(modify,private_predicate,p),
logtalk(foo::abolish(p/0), _)

)

Note, however, that Goal and ExecutionContext can be unbound or only partially instantiated when the
corresponding information is not available (e.g. due to compiler optimizations that throw away the necessary
error context information). The ExecutionContext argument is an opaque term that can be decoded using
the logtalk::execution_context/7 predicate.

1.12.1 Raising Exceptions

The error handling section in the reference manual lists a set of convenient built-in methods that generate
error/2 exception terms with the expected context argument. For example, instead of manually constructing
a type error as in:

...,
context(Context),
throw(error(type_error(atom, 42), Context)).

we can simply write:

...,
type_error(atom, 42).

The provided error built-in methods cover all standard error types found in the ISO Prolog Core standard.

1.12.2 Type-checking

One of the most common case where errors may be generated is when type-checking predicate arguments
and input data before processing it. The standard library includes a type object that defines an extensive set
of types, together with predicates for validating and checking terms. The set of types is user extensible and
new types can be defined by adding clauses for the type/1 and check/2 multifile predicates. For example,
assume that we want to be able to check temperatures expressed in Celsius, Fahrenheit, or Kelvin scales. We
start by declaring (in an object or category) the new type:

:- multifile(type::type/1).
type::type(temperature(_Unit)).

Next, we need to define the actual code that would verify that a temperature is valid. As the different scales
use a different value for absolute zero, we can write:

1.12. Error handling 93

../../docs/logtalk_0.html#logtalk-0-execution-context-7
../../docs/type_0.html#type-0

The Logtalk Handbook, Release v3.61.0

:- multifile(type::check/2).
type::check(temperature(Unit), Term) :-

check_temperature(Unit, Term).

% given that temperature has only a lower bound, we make use of the library
% property/2 type to define the necessary test expression for each unit
check_temperature(celsius, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= -273.15)), Term).
check_temperature(fahrenheit, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= -459.67)), Term).
check_temperature(kelvin, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= 0.0)), Term).

With this definition, a term is first checked that it is a float value before checking that it is in the expected
open interval. But how do we use this new type? If we want just to test if a temperature is valid, we can
write:

..., type::valid(temperature(celsius), 42.0), ...

The type::valid/2 predicate succeeds or fails depending on the second argument being of the type specified
in the first argument. If instead of success or failure we want to generate an error for invalid values, we can
use the type::check/2 predicate instead:

..., type::check(temperature(celsius), 42.0), ...

If we require an error/2 exception term with the error context, we can use instead the type::check/3 predi-
cate:

...,
context(Context),
type::check(temperature(celsius), 42.0, Context),
...

Note that context/1 calls are inlined and messages to the library type object use static binding when com-
piling with the optimize flag turned on, thus enabling efficient type-checking.

1.12.3 Expected terms

Support for representing and handling expected terms is provided by the expecteds library. Expected terms
allows defering errors to later stages of an application in alternative to raising an exception as soon as an
error is detected.

1.12.4 Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in predicate to read and compile a Logtalk
source file. This improves the compatibility with backend Prolog compilers and their proprietary syntax
extensions and standard compliance quirks. But one consequence of this design choice is that invalid Prolog
terms or syntax errors may abort the compilation process with limited information given to the user (due to
the inherent limitations of the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of errors and potential errors, described
below, that the compiler will try to detect and report, depending on the used compiler flags (see the Compiler
flags section of this manual on lint flags for details).

94 Chapter 1. User Manual

../../docs/type_0.html#type-0-valid-2
../../docs/type_0.html#type-0-check-2
../../docs/type_0.html#type-0-check-3

The Logtalk Handbook, Release v3.61.0

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may
reveal a misspell entity name or just an entity that it will be loaded later. Out-of-oder loading should be
avoided when possible as it prevents some code optimizations such as static binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as such, one of the most common errors
when programming in Prolog. Assuming that the backend Prolog compiler implementation of the read_term/
3 predicate supports the standard singletons/1 option, the compiler warns about any singleton variable
found while compiling a source file.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or
category. Sometimes the redefinition is intended. In other cases, the user may not be aware that a particular
backend Prolog compiler may already provide the predicate as a built-in predicate or may want to ensure
code portability among several Prolog compilers with different sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine
a Logtalk built-in. But the redefinition will probably be an error in most (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default
behavior is to report the error and abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate
that is not defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are
simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a non-standard built-in predicate or
arithmetic function, Portability warnings are also reported for non-standard flags or flag values. These
warnings often cannot be avoided due to the limited scope of the ISO Prolog standard.

1.12. Error handling 95

The Logtalk Handbook, Release v3.61.0

Deprecated elements

A warning will be reported if a deprecated directive, control construct, or predicate is used. These warnings
should be fixed as soon as possible as support for any deprecated features will likely be discontinued in
future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate
directive.

Duplicated directives

A warning will be reported for any duplicated scope, multifile, dynamic, discontiguous, meta-predicate, and
meta-non-terminal directives. Note that conflicting directives for the same predicate are handled as errors,
not as duplicated directive warnings.

Duplicated clauses

A warning will be reported for any duplicated entity clauses. This check is computationally heavy, however,
and usually turned off by default.

Goals that are always true or false

A warning will be reported for any goal that is always true or false. This is usually caused by typos in the
code. For example, writing X == y instead of X == Y.

Trivial fails

A warning will be reported for any call to a local static predicate with no matching clause.

Suspicious calls

A warning will be reported for calls that are syntactically correct but most likely a semantic error. An example
is (::)/1 calls in clauses that apparently are meant to implement recursive predicate definitions where the
user intention is to call the local predicate definition.

Lambda variables

A warning will be reported for lambda expressions with unclassified variables (not listed as either lambda free
or lambda parameter variables), for variables playing a dual role (as both lambda free and lambda parameter
variables), and for lambda parameters used elsewhere in a clause.

96 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Redefinition of predicates declared in uses/2 or use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed.
The default behavior is to report the error and abort the compilation.

1.12.5 Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in
methods or from message sending. For a complete and detailed description of runtime errors please consult
the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception
in case of misuse.

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling arguments, throwing an exception in
case of misuse.

Message sending

The message sending mechanisms always check if the receiver of a message is a defined object and if the
message corresponds to a declared predicate within the scope of the sender. The built-in protocol forwarding
declares a predicate, forward/1, which is automatically called (if defined) by the runtime for any message
that the receiving object does not understand. The usual definition for this error handler is to delegate or
forward the message to another object that might be able to answer it:

forward(Message) :-
% forward the message while preserving the sender
[Object::Message].

If preserving the original sender is not required, this definition can be simplified to:

forward(Message) :-
Object::Message.

More sophisticated definitions are, of course, possible.

1.12. Error handling 97

../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.61.0

1.13 Reflection

Logtalk provides support for both structural and behavioral reflection. Structural reflection supports compu-
tations over an application structure while behavioral reflection computations over what an application does
while running. The structural and behavioral reflection APIs are used by all the developer tools, which are
regular applications.

1.13.1 Structural reflection

Structural reflection allows querying the properties of objects, categories, protocols, and predicates. This API
provides two views on the structure of an application: a transparent-box view and a black-box view, described
next.

Transparent-box view

The transparent-box view provides a structural view of the contents and properties of entities, predicates,
and source files akin to accessing the corresponding source code. I.e. this is the view we use when asking
questions such as: What predicates are declared in this protocol? Which predicates are called by this predicate?
Where are clauses for this multifile predicate defined?

For entities, built-in predicates are provided for enumerating entities, enumerating entity properties (includ-
ing entity declared, defined, called, and updated predicates; i.e. full predicate cross-referencing data), and
enumerating entity relations (for full entity cross-referencing data). For a detailed description of the sup-
ported entity properties, see the sections on object properties, protocol properties, and category properties. For
examples of querying entity relations, see the sections on object relations, protocol relations, and category
relations.

Note: Some entity and predicate properties are only available when the source files are compiled with the
source_data flag turned on.

The logtalk built-in object provides predicates for querying loaded source files and their properties.

Black-box view

The black-box view provides a view that takes into account entity encapsulation and thus only allow querying
about predicates and operators that are within scope of the entity calling the reflection methods. This is the
view we use and asking questions such as: What messages can be sent to this object?

Built-in methods are provided for querying the predicates that are declared and can be called or used as
messages and for querying the predicate properties. It is also possible to enumerate entity operators. See the
sections on finding declared predicates and on predicate properties for more details.

98 Chapter 1. User Manual

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

1.13.2 Behavioral reflection

Behavioral reflection provides insight on what an application does when running. Specifically, by observing
and acting on the messages being exchanged between objects. See the section on event-driven programming
for details. There is also a dependents library that provides an implementation of Smalltalk dependents
mechanism.

For use in debugging tools, there is also a small reflection API providing trace and debug event predicates
provided by the logtalk built-in object.

1.14 Writing and running applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understand-
ing of the principles of object-oriented programming. Most guidelines for writing good Prolog code apply as
well to Logtalk programming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to use the currently available object-
oriented methodologies, tools, and metrics [Champaux92] in logic programming. That said, writing appli-
cations in Logtalk is similar to writing applications in Prolog: we define new predicates describing what is
true about our domain objects, about our problem solution. We encapsulate our predicate directives and
definitions inside new objects, categories, and protocols that we create by hand with a text editor or by using
the Logtalk built-in predicates. Some of the information collected during the analysis and design phases
can be integrated in the objects, categories and protocols that we define by using the available entity and
predicate documenting directives.

1.14.1 Starting Logtalk

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does
not modify your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our
applications can be made of both normal Prolog clauses and object definitions.

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen
Prolog compiler. On POSIX operating-systems, the scripts should be available from the command-line; scripts
are named upon the used backend Prolog compilers. On Windows, the shortcuts should be available from
the Start Menu. For example, assuming a POSIX operating-system and GNU Prolog as the backend:

$ gplgt
...

Depending on your Logtalk installation, you may need to type instead gplgt.sh.

1.14.2 Running parallel Logtalk processes

Running parallel Logtalk processes is enabled by setting the clean flag to on. This is the default flag value in
the backend adapter files. With this setting, the intermediate Prolog files generated by the Logtalk compiler
include the processes identifier in the names, thus preventing file names clashes when running parallel
processes. When the flag is turned off, the generated intermediate Prolog file names don’t include the
process identifier and are kept between runs. This is usually done to avoid repeated recompilation of stable
code when developing large applications or when running multiple test sets for performance (by avoiding
repeated recompilation of the lgtunit tool).

1.14. Writing and running applications 99

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

To run parallel Logtalk processes with the clean flag turned off, each process must use its own scratch
directory. This is accomplished by defining the scratch_directory library alias to a per process location. For
example, assuming we’re using GNU Prolog as the backend, a possible definition could be:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(scratch_directory, Directory) :-
temporary_name(lgtXXXXXX, Name),
decompose_file_name(Name, _, Prefix, _),
atom_concat('/tmp/', Prefix, Directory),
(file_exists(Directory) ->

true
; make_directory(Directory)
).

Assuming the code above is saved in a parallel_logtalk_processes_setup.pl file, we would then start
Logtalk using:

$ gplgt --init-goal "consult('parallel_logtalk_processes_setup.pl')"

The details on how to define and load the definition of the scratch_directory library alias are, however,
backend specific (due to the lack of Prolog standardization) and possibly also operating-system specific
(different locations for the temporary directory). The Logtalk library contains support for selected backends.

1.14.3 Source files

Logtalk source files may define any number of entities (objects, categories, or protocols). Source files may
also contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is usually copied
as-is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism).
Prolog modules are compiled as objects. The following Prolog directives are processed when read (thus
affecting the compilation of the source code that follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. The initialization/1 directive may be used for defining an initialization goal to be exe-
cuted when loading a source file.

Logtalk source files can include the text of other files by using the include/1 directive. Although there is also
a standard Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by
the Logtalk compiler, not by the backend Prolog compiler, to improve portability.

When writing a Logtalk source file the following advice applies:

• When practical and when performance is critical, define each entity on its own source file.

• Source file loading order can impact performance (e.g. if an object imports a category defined in a
source file loaded after the object source file, no static binding optimizations will be possible).

• Initialization directives that result in the compilation and loading of other source files (e.g. libraries)
should preferably be written in the application loader file to ensure the availability of the entities they
define when compiling the application source files (thus enabling static binding optimizations).

100 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Naming conventions

When defining each entity in its own source file, it is recommended that the source file be named after the
entity identifier. For parametric objects, the identifier arity can be appended to the identifier functor. By
default, all Logtalk source files use the extension .lgt but this is optional and can be set in the adapter files.
For example, we may define an object named vehicle and save it in a vehicle.lgt source file. A sort(_)
parametric object would be saved it on a sort_1.lgt source file.

Source file text encoding

The text encoding used in a source file may be declared using the encoding/1 directive when running Logtalk
with backend Prolog compilers that support multiple encodings (check the encoding_directive flag in the
adapter file of your Prolog compiler).

1.14.4 Multi-pass compiler

Logtalk is implemented using a multi-pass compiler. In comparison, some Prolog systems use a multi-pass
compiler while others use a single-pass compiler. While there are pros and cons with each solution, the most
relevant consequence in this context is for the content of source files. In Logtalk, entities and predicates only
become available (for the runtime system) after the source file is successfully compiled and loaded. This
may prevent some compiler optimizations, notably static binding, if some of the referred entities are defined
in the same source file. On the other hand, the order of predicate directives and predicate definitions is
irrelevant. In contrast, in a system implemented using a single-pass compiler, the order of the source file
terms can and often is significant for proper and successful compilation. In these systems, predicates may
become available for calling as soon as they are compiled even if the remaining of the source file is yet to be
compiled.

The Logtalk compiler reads source files using the Prolog standard read_term/3 predicate. This ensures com-
patibility with any syntax extensions that the used backend may implement. In the first compiler stage, all
source file terms are read and data about all defined entities, directives, predicates, and grammar rules is
collected. Any defined term-expansion rules are applied to the read terms. Grammar rules are expanded into
predicate clauses unless expanded by user-defined term-expansion rules. The second stage compiles all ini-
tialization goals and clause bodies, taking advantage of the data collected in the first stage, and applying any
defined goal-expansion rules. Depending on the compilation mode, the generated code can be instrumented
for debugging tools or optimized for performance. Linter checks are performed during these two first stages.
The final step in the second stage is to write the generated intermediate Prolog code into a temporary file.
In the third and final stage, this intermediate Prolog file is compiled and loaded by the used backend. These
intermediate files are deleted by default after loading (see the clean flag description for details).

1.14.5 Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source
files can be compiled to disk by calling the logtalk_compile/1 built-in predicate:

| ?- logtalk_compile([source_file1, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that
can then be consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use the logtalk_load/1 built-in predicate:

| ?- logtalk_load([source_file1, source_file2, ...]).

1.14. Writing and running applications 101

The Logtalk Handbook, Release v3.61.0

This predicate works in the same way of the predicate logtalk_compile/1 but also loads the compiled files
into memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source
file name extension, as defined in the adapter file (by default, .lgt), can be omitted.

If you have more than a few source files then you may want to use a loader file helper file containing the
calls to the logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load
all your Logtalk entities into memory (see below for details).

With most backend Prolog compilers, you can use the shorthands {File} for logtalk_load(File) and {File1,
File2, ...} for logtalk_load([File1, File2, ...]). The use these shorthands should be restricted to the
Logtalk/Prolog top-level interpreter as they are not part of the language specification and may be commented
out in case of conflicts with backend Prolog compiler features.

The built-in predicate logtalk_make/0 can be used to reload all modified source files. With most backend
Prolog compilers, you can also use the {*} top-level shortcut. Files are also reloaded when the compilation
mode changes. An extended version of this predicate, logtalk_make/1, accepts multiple targets including
all, clean, check, circular, documentation, caches, debug, normal, and optimal. For example, assume
that you have loaded your application files and found a bug. You can easily recompile the files in debug
mode by using the logtalk_make(debug) goal. After debugging and fixing the bug, you can reload the files
in normal mode using the logtalk_make(normal) or in optimized mode using the logtalk_make(optimal)
goal. See the predicates documentation for a complete list of targets and top-level shortcuts. In particular,
the logtalk_make(clean) goal can be specially useful before switching backend Prolog compilers as the
generated intermediate files may not be compatible. The logtalk_make(caches) goal is usually used when
benchmarking compiler performance improvements.

1.14.6 Loader files

If you look into the Logtalk distribution, you will notice that most source code directories (e.g. of tools,
libraries, and examples) contain a driver file that can be used to load all included source files and any
required libraries. These loader files are usually named loader.lgt or contain the word loader in their
name. Loader files are ordinary source files and thus compiled and loaded like any source file. By also
defining a loader file for your project, you can then load it by simply typing:

| ?- {loader}.

Another driver file, usually named tester.lgt (or containing the word tester in its name) is commonly used
to load and run tests. By also defining a tester file for your project, you can then run its tests by simply
typing:

| ?- {tester}.

Usually these driver files contain calls to the built-in predicates set_logtalk_flag/2 (e.g. for setting global,
project-specific, flag values) and logtalk_load/1 or logtalk_load/2 (for loading project files), wrapped inside
a Prolog initialization/1 directive for portability. For instance, if your code is split in three source files
named source1.lgt, source2.lgt, and source3.lgt, then the contents of your loader file could be:

:- initialization((
% set project-specific global flags
set_logtalk_flag(events, allow),
% load the project source files
logtalk_load([source1, source2, source3])

)).

102 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Another example of directives that are often used in a loader file would be op/3 directives declaring global
operators needed by your project. Loader files are also often used for setting source file-specific compiler
flags (this is useful even when you only have a single source file if you always load it with using the same
set of compiler flags). For example:

:- initialization((
% set project-specific global flags
set_logtalk_flag(underscore_variables, dont_care),
set_logtalk_flag(source_data, off),
% load the project source files
logtalk_load(

[source1, source2, source3],
% source file-specific flags
[portability(warning)]),

logtalk_load(
[source4, source5],
% source file-specific flags
[portability(silent)])

)).

To take the best advantage of loader and tester files, define a clause for the multifile and dynamic
logtalk_library_path/2 predicate for the directory containing your source files as explained in the next
section.

When your project also uses Prolog module resources, the loader file is also the advised place to load them,
preferably without any exports. For example:

:- use_module(library(clpfd), []).
...

:- initialization((
...

)).

Complex projects often use a main loader file that loads the loader files of each of the project components.
Thus, loader files provide a central point to understand a project organization and dependencies.

Worth mentioning here a common mistake when first starting working with loader files. New users some-
times try to set compiler flags using logtalk_load/2 when loading a loader file. For example, by writing:

| ?- logtalk_load(loader, [optimize(on)]).

This will not work as you might expect as the compiler flags will only be used in the compilation of the
loader.lgt file itself and will not affect the compilation of files loaded through the initialization/1 direc-
tive contained on the loader file.

1.14. Writing and running applications 103

The Logtalk Handbook, Release v3.61.0

1.14.7 Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by
defining or asserting clauses for the dynamic and multifile predicate logtalk_library_path/2. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases
may also be used on the second argument. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').
logtalk_library_path(examples, lgtuser('examples/')).
logtalk_library_path(viewpoints, examples('viewpoints/')).

This allows us to load a library source file without the need to first change the current working directory to
the library directory and then back to the original directory. For example, in order to load a loader.lgt file,
contained in a library named viewpoints, we just need to type:

| ?- logtalk_load(viewpoints(loader)).

The best way to take advantage of this feature is to load at startup a source file containing clauses for
the logtalk_library_path/2 predicate needed for all available libraries (typically, using a settings file, as
discussed below). This allows us to load library source files or entire libraries without worrying about
libraries paths, improving code portability. The directory paths on the second argument should always end
with the path directory separator character. Most backend Prolog compilers allows the use of environment
variables in the second argument of the logtalk_library_path/2 predicate. Use of POSIX relative paths
(e.g. '../' or './') for top-level library directories (e.g. lgtuser in the example above) is not advised as
different backend Prolog compilers may start with different initial working directories, which may result in
portability problems of your loader files.

This library notation provides functionality inspired by the file_search_path/2 mechanism introduced by
Quintus Prolog and later adopted by some other Prolog compilers but with a key difference: there is no
fragile search mechanism and the Logtalk make can be used to check for duplicated library aliases. Multiple
definitions for the same alias are problematic when using external dependencies as any third-party update
to those dependencies can introduce file name clashes. Note that the potential for these clashes cannot
be reliably minimized by a careful ordering of the logtalk_library_path/2 predicate clauses due to this
predicate being multifile and dynamic.

1.14.8 Settings files

Although is always possible to edit the backend Prolog compiler adapter files, the recommended solution
to customize compiler flags is to create a settings.lgt file in the Logtalk user folder or in the user home
folder. Depending on the backend Prolog compiler and on the operating-system, is also possible to define
per-project settings files by creating a settings.lgt file in the project directory and by starting Logtalk from
this directory. At startup, Logtalk tries to load a settings.lgt file from the following directories, searched
in sequence:

• Startup directory ($LOGTALK_STARTUP_DIRECTORY)

104 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

• Logtalk user directory ($LOGTALKUSER)

• User home directory ($HOME; %USERPROFILE% on Windows if %HOME% is not defined)

• Application data directory (%APPDATA%\Logtalk; only on Windows)

• Config directory ($XDG_CONFIG_HOME/logtalk)

• Default config directory ($HOME/.config/logtalk/)

The startup directory is only searched when the read-only settings_file flag is set to allow. When no settings
files are found, Logtalk will use the default compiler flag values set on the backend Prolog compiler adapter
files. When limitations of the backend Prolog compiler or on the operating-system prevent Logtalk from
finding the settings files, these can always be loaded manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are com-
piled and loaded silently with any errors being reported but otherwise ignored). The usual contents is an
initialization/1 Prolog directive containing calls to the set_logtalk_flag/2 Logtalk built-in predicate and
asserting clauses for the logtalk_library_path/2 multifile dynamic predicate. Note that the set_logtalk_flag/2
directive cannot be used as its scope is local to the source file being compiled.

One of the troubles of writing portable applications is the different feature sets of Prolog compilers. Using
the Logtalk support for conditional compilation and the prolog_dialect flag we can write a single settings file
that can be used with several backend Prolog compilers:

:- if(current_logtalk_flag(prolog_dialect, yap)).

% YAP specific settings
...

:- elif(current_logtalk_flag(prolog_dialect, gnu)).

% GNU Prolog specific settings
...

:- else.

% generic Prolog settings

:- endif.

The Logtalk distribution includes a settings-sample.lgt sample file with commented out code snippets for
common settings.

1.14.9 Compiler linter

The compiler includes a linter that checks for a wide range of possible problems in source files. Notably, the
compiler checks for unknown entities, unknown predicates, undefined predicates (i.e. predicates that are de-
clared but not defined), missing directives (including missing dynamic/1 and meta_predicate/1 directives),
redefined built-in predicates, calls to non-portable predicates, singleton variables, goals that are always true
or always false (i.e. goals that are can be replaced by true or fail), and trivial fails (i.e. calls to predicates
with no match clauses). Most of the linter warnings are controlled by compiler flags. See the next section for
details.

1.14. Writing and running applications 105

The Logtalk Handbook, Release v3.61.0

1.14.10 Compiler flags

The logtalk_load/1 and logtalk_compile/1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set_logtalk_flag/2. Although the default flag values cover the usual cases, you may want to use a different
set of flag values while compiling or loading some of your Logtalk source files. This can be accomplished by
using the logtalk_load/2 or the logtalk_compile/2 built-in predicates. These two predicates accept a list of
options affecting how a Logtalk source file is compiled and loaded:

| ?- logtalk_compile(Files, Options).

or:

| ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions
called with the default compiler flag values. The options are represented by a compound term where the
functor is the flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the
set_logtalk_flag/2 built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the current_logtalk_flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

Logtalk also implements a set_logtalk_flag/2 directive, which can be used to set flags within a source file or
within an entity. For example:

% compile objects in this source file with event support
:- set_logtalk_flag(events, allow).

:- object(foo).

% compile this object with support
% for dynamic predicate declarations
:- set_logtalk_flag(dynamic_declarations, allow).
...

:- end_object.

...

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing
it.

Note: Applications should never rely on default flag values for working properly. Whenever the compilation
of a source file or an entity requires a specific flag value, the flag should be set explicitly in the entity, in the
source file, or in the loader file.

106 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Read-only flags

Some flags have read-only values and thus cannot be changed at runtime. Their values are defined in the
Prolog backend adapter files These are:

settings_file
Allows or disables loading of a settings file at startup. Possible values are allow, restrict, and deny.
The usual default value is allow but it can be changed by editing the adapter file when e.g. embedding
Logtalk in a compiled application. With a value of allow, settings files are searched in the startup di-
rectory, in the Logtalk user directory, in the user home directory, in the APPDATA if running on Windows,
and in the XDG configuration directory. With a value of restrict, the search for the settings files skips
the startup directory.

prolog_dialect
Identifier of the backend Prolog compiler (an atom). This flag can be used for conditional compilation
of Prolog compiler specific code.

prolog_version
Version of the backend Prolog compiler (a compound term, v(Major, Minor, Patch), whose arguments
are integers). This flag availability depends on the Prolog compiler. Checking the value of this flag fails
for any Prolog compiler that does not provide access to version data.

prolog_compatible_version
Compatible version of the backend Prolog compiler (a compound term, usually with the format
@>=(v(Major, Minor, Patch)), whose arguments are integers). This flag availability depends on
the Prolog compiler. Checking the value of this flag fails for any Prolog compiler that does not provide
access to version data.

unicode
Informs Logtalk if the backend Prolog compiler supports the Unicode standard. Possible flag values
are unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual
Plane).

encoding_directive
Informs Logtalk if the backend Prolog compiler supports the encoding/1 directive. This directive is used
for declaring the text encoding of source files. Possible flag values are unsupported, full (can be used
in both Logtalk source files and compiler generated Prolog files), and source (can be used only in
Logtalk source files).

tabling
Informs Logtalk if the backend Prolog compiler provides tabling programming support. Possible flag
values are unsupported and supported.

engines
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for Logtalk threaded engines. Possible flag values are unsupported and supported.

threads
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for all high-level Logtalk multi-threading features. Possible flag values are unsupported and
supported.

modules
Informs Logtalk if the backend Prolog compiler provides suitable module support. Possible flag val-
ues are unsupported and supported (independently of this flag, Logtalk provides limited support for
compiling Prolog modules as objects).

coinduction
Informs Logtalk if the backend Prolog compiler provides the required minimal support for cyclic terms

1.14. Writing and running applications 107

The Logtalk Handbook, Release v3.61.0

necessary for working with coinductive predicates. Possible flag values are unsupported and supported.

Version flags

version_data(Value)
Read-only flag whose value is the compound term logtalk(Major,Minor,Patch,Status). The first
three arguments are integers and the last argument is an atom, possibly empty, representing version
status: aN for alpha versions, bN for beta versions, rcN for release candidates (with N being a natural
number), and stable for stable versions. The version_data flag is also a de facto standard for Prolog
compilers.

Lint flags

unknown_entities(Option)
Controls the unknown entity warnings, resulting from loading an entity that references some other
entity that is not currently loaded. Possible option values are warning (the usual default) and silent.
Note that these warnings are not always avoidable, specially when using reflective designs of class-
based hierarchies.

unknown_predicates(Option)
Defines the compiler behavior when unknown messages or calls to unknown predicates (or non-
terminals) are found. An unknown message is a message sent to an object that is not part of the
object protocol. An unknown predicate is a called predicate that is neither locally declared or defined.
Possible option values are error, warning (the usual default), and silent (not recommended).

undefined_predicates(Option)
Defines the compiler behavior when calls to declared but undefined predicates (or non-terminals) are
found. Note that these calls will fail at runtime as per closed-world assumption. Possible option values
are error, warning (the usual default), and silent (not recommended).

steadfastness(Option)
Controls warnings about possible non steadfast predicate definitions due to variable aliasing at a clause
head and a cut in the clause body. Possible option values are warning and silent (the usual default
due to the possibility of false positives).

portability(Option)
Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog built-in arith-
metic function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible option
values are warning and silent (the usual default).

deprecated(Option)
Controls the deprecated predicate warnings. Possible option values are warning (the usual default)
and silent.

missing_directives(Option)
Controls the missing predicate directive warnings. Possible option values are warning (the usual de-
fault) and silent (not recommended).

duplicated_directives(Option)
Controls the duplicated predicate directive warnings. Possible option values are warning (the usual
default) and silent (not recommended). Note that conflicting directives for the same predicate are
handled as errors, not as duplicated directive warnings.

trivial_goal_fails(Option)
Controls the printing of warnings warnings for calls to local static predicates with no matching clauses.
Possible option values are warning (the usual default) and silent (not recommended).

108 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

always_true_or_false_goals(Option)
Controls the printing of warnings for goals that are always true or false. Possible option values are
warning (the usual default) and silent (not recommended).

lambda_variables(Option)
Controls the printing of lambda variable related warnings. Possible option values are warning (the
usual default) and silent (not recommended).

suspicious_calls(Option)
Controls the printing of suspicious call warnings. Possible option values are warning (the usual default)
and silent (not recommended).

redefined_built_ins(Option)
Controls the Logtalk and Prolog built-in predicate redefinition warnings. Possible option values are
warning and silent (the usual default). Warnings about redefined Prolog built-in predicates are often
the result of running a Logtalk application on several Prolog compilers as each Prolog compiler defines
its set of built-in predicates.

redefined_operators(Option)
Controls the Logtalk and Prolog built-in operator redefinition warnings. Possible option values are
warning (the usual default) and silent. Redefining Logtalk operators or standard Prolog operators
can break term parsing causing syntax errors or change how terms are parsed introducing bugs.

singleton_variables(Option)
Controls the singleton variable warnings. Possible option values are warning (the usual default) and
silent (not recommended).

underscore_variables(Option)
Controls the interpretation of variables that start with an underscore (excluding the anonymous vari-
able) that occur once in a term as either don’t care variables or singleton variables. Possible option
values are dont_care and singletons (the usual default). Note that, depending on your Prolog com-
piler, the read_term/3 built-in predicate may report variables that start with an underscore as singleton
variables. There is no standard behavior, hence this option.

naming(Option)
Controls warnings about entity, predicate, and variable names per official coding guidelines (which
advise using underscores for entity and predicate names and camel case for variable names). Addition-
ally, variable names should not differ only on case. Possible option values are warning and silent (the
usual default due to the current limitation to ASCII names and the computational cost of the checks).

duplicated_clauses(Option)
Controls warnings of duplicated entity clauses (and duplicated entity grammar rules). Possible option
values are warning and silent (the usual default due to the required heavy computations). When the
term-expansion mechanism is used and results in duplicated clauses, the reported line numbers are for
lines of the original clauses that were expanded.

disjunctions(Option)
Controls warnings on clauses where the body is a disjunction. Possible option values are warning (the
usual default) and silent.

conditionals(Option)
Controls warnings on if-then-else and soft-cut control constructs. Possible option values are warning
(the usual default) and silent.

catchall_catch(Option)
Controls warnings on catch/3 goals that catch all exceptions. Possible option values are warning and
silent (the usual default). Lack of standardization often makes it tricky or cumbersome to avoid too
generic catch/3 goals when writing portable code.

1.14. Writing and running applications 109

The Logtalk Handbook, Release v3.61.0

tail_recursive(Option)
Controls warnings of non-tail recursive predicate (and non-terminal) definitions. The lint check does
not detect all cases of non-tail recursive predicate definitions, however. Also, definitions that make two
or more recursive calls are not reported as usually they cannot be changed to be tail recursive. Possible
option values are warning and silent (the usual default).

Optional features compilation flags

complements(Option)
Allows objects to be compiled with support for complementing categories turned off in order to im-
prove performance and security. Possible option values are allow (allow complementing categories
to override local object predicate declarations and definitions), restrict (allow complementing cate-
gories to add predicate declarations and definitions to an object but not to override them), and deny
(ignore complementing categories; the usual default). This option can be used on a per-object basis.
Note that changing this option is of no consequence for objects already compiled and loaded.

dynamic_declarations(Option)
Allows objects to be compiled with support for dynamic declaration of new predicates turned off in
order to improve performance and security. Possible option values are allow and deny (the usual
default). This option can be used on a per-object basis. Note that changing this option is of no
consequence for objects already compiled and loaded. This option is only checked when sending an
asserta/1 or assertz/1 message to an object. Local asserting of new predicates is always allowed.

events(Option)
Allows message sending calls to be compiled with or without event-driven programming support. Possi-
ble option values are allow and deny (the usual default). Objects (and categories) compiled with this
option set to deny use optimized code for message-sending calls that does not trigger events. As such,
this option can be used on a per-object (or per-category) basis. Note that changing this option is of no
consequence for objects already compiled and loaded.

context_switching_calls(Option)
Allows context switching calls ((<<)/2) to be either allowed or denied. Possible option values are
allow and deny. The default flag vale is allow. Note that changing this option is of no consequence for
objects already compiled and loaded.

Backend Prolog compiler and loader flags

prolog_compiler(Flags)
List of compiler flags for the generated Prolog files. The valid flags are specific to the used Prolog
backend compiler. The usual default is the empty list. These flags are passed to the backend Prolog
compiler built-in predicate that is responsible for compiling to disk a Prolog file. For Prolog compilers
that don’t provide separate predicates for compiling and loading a file, use instead the prolog_loader
flag.

prolog_loader(Flags)
List of loader flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default is the empty list. These flags are passed to the backend Prolog compiler
built-in predicate that is responsible for loading a (compiled) Prolog file.

110 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Other flags

scratch_directory(Directory)
Sets the directory to be used to store the temporary files generated when compiling Logtalk source files.
This directory can be specified using an atom or using library notation. The directory must always end
with a slash. The default value is a sub-directory of the source files directory, either './lgt_tmp/' or
'./.lgt_tmp/' (depending on the backend Prolog compiler and operating-system). Relative directo-
ries must always start with './' due to the lack of a portable solution to check if a path is relative
or absolute. The default value set on the backend Prolog compiler adapter file can be overriden by
defining the scratch_directory library alias (see the logtalk_library_path/2 predicate documentation
for details).

report(Option)
Controls the default printing of messages. Possible option values are on (by usual default, print all
messages that are not intercepted by the user), warnings (only print warning and error messages that
are not intercepted by the user), and off (do not print any messages that are not intercepted by the
user).

code_prefix(Character)
Enables the definition of prefix for all functors of Prolog code generated by the Logtalk compiler. The
option value must be a single character atom. Its default value is '$'. Specifying a code prefix provides
a way to solve possible conflicts between Logtalk compiled code and other Prolog code. In addition,
some Prolog compilers automatically hide predicates whose functor start with a specific prefix such as
the character $. Although this is not a read-only flag, it should only be changed at startup time and
before loading any source files. When changing this flag (e.g. from a settings file), restart with the clean
flag turned on to ensure that any compiled files using the old code_prefix value will be recompiled.

optimize(Option)
Controls the compiler optimizations. Possible option values are on (used by default for deployment)
and off (used by default for development). Compiler optimizations include the use of static binding
whenever possible, the removal of redundant calls to true/0 from predicate clauses, the removal of
redundant unifications when compiling grammar rules, and inlining of predicate definitions with a
single clause that links to a local predicate, to a plain Prolog built-in (or foreign) predicate, or to a
Prolog module predicate with the same arguments. Care should be taken when developing applications
with this flag turned on as changing and reloading a file may render static binding optimizations invalid
for code defining in other loaded files. Turning on this flag automatically turns off the debug flag.

source_data(Option)
Defines how much information is retained when compiling a source file. Possible option values are on
(the usual default for development) and off. With this flag set to on, Logtalk will keep the information
represented using documenting directives plus source location data (including source file names and
line numbers). This information can be retrieved using the reflection API and is useful for documenting,
debugging, and integration with third-party development tools. This flag can be turned off in order to
generate more compact code.

debug(Option)
Controls the compilation of source files in debug mode (the Logtalk default debugger can only be
used with files compiled in this mode). Also controls, by default, printing of debug> and debug(Topic)
messages. Possible option values are on and off (the usual default). Turning on this flag automatically
turns off the optimize flag.

reload(Option)
Defines the reloading behavior for source files. Possible option values are skip (skip reloading
of already loaded files; this value can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged code), changed (the usual default;
reload files only when they are changed since last loaded provided that any explicit flags and the
compilation mode are the same as before), and always (always reload files).

1.14. Writing and running applications 111

The Logtalk Handbook, Release v3.61.0

relative_to(Directory)
Defines a base directory for resolving relative source file paths. The default value is the directory of
the source file being compiled.

hook(Object)
Allows the definition of an object (which can be the pseudo-object user) implementing the expanding
built-in protocol. The hook object must be compiled and loaded when this option is used. It’s also
possible to specify a Prolog module instead of a Logtalk object but the module must be pre-loaded and
its identifier must be different from any object identifier.

clean(Option)
Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source files. Pos-
sible option values are off and on (the usual default). When turned on, intermediate files are deleted
after loading and all source files are recompiled disregarding any existing intermediate files. When
turned off, the intermediate files are kept. This is useful when embedding applications, which requires
collecting the intermediate code, and when working on large applications to avoid repeated recompi-
lation of stable code. The flag must be turned on when changing compilation modes, changing flags
such as code_prefix, or when turning on linter flags that are off by default without at the same time
making changes to the application source files themselves as any existing intermediate files would not
be recompiled as necessary due to file timestamps not changing.

User-defined flags

Logtalk provides a create_logtalk_flag/3 predicate that can be used for defining new flags.

1.14.11 Reloading source files

As a general rule, reloading source files should never occur in production code and should be handled with
care in development code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog
file that is generated by the Logtalk compiler. The problem is that there is no standard behavior for reloading
Prolog files. For static predicates, almost all Prolog compilers replace the old definitions with the new ones.
However, for dynamic predicates, the behavior depends on the Prolog compiler. Most compilers replace
the old definitions but some of them simply append the new ones, which usually leads to trouble. See the
compatibility notes for the backend Prolog compiler you intend to use for more information. There is an
additional potential problem when using multi-threading programming. Reloading a threaded object does
not recreate from scratch its old message queue, which may still be in use (e.g. threads may be waiting on
it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and,
therefore, recompiling them) by setting the reload compiler flag to skip. For code under development, you
can turn off the clean flag to avoid recompiling files that have not been modified since last compilation
(assuming that backend Prolog compiler that you are using supports retrieving of file modification dates).
You can disable deleting the intermediate files generated when compiling source files by changing the default
flag value in your settings file, by using the corresponding compiler flag with the compiling and loading built-
in predicates, or, for the remaining of a working session, by using the call:

| ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might be produced when compiling a
source file will not show up if the corresponding object file is up-to-date because the source file is not being
(re)compiled. Second, if you are using several Prolog compilers with Logtalk, be sure to perform the first
compilation of your source files with the clean flag turned off: the intermediate Prolog files generated by
the Logtalk compiler may be not compatible across Prolog compilers or even for the same Prolog compiler
across operating systems (e.g. due to the use of different character encodings or end-of-line characters).

112 Chapter 1. User Manual

../../docs/user_0.html#user-0
../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

1.14.12 Batch processing

When doing batch processing, you probably want to turn off the report flag to suppress all messages of type
banner, comment, comment(_), warning, and warning(_) that are normally printed. Note that error messages
and messages providing information requested by the user will still be printed.

1.14.13 Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deploy-
ment of applications. To minimize the generated code size, turn the source_data flag off. To optimize runtime
performance, turn on the optimize flag. Your chosen backend Prolog compiler may also provide performance
related flags; check its documentation.

Pay special attention to file compilation/loading order. Whenever possible, compile and load your files taking
into account file dependencies. By default, the compiler will print a warning whenever a file references an
entity that is not yet loaded. Solving these warnings is key for optimal performance by enabling static binding
optimizations. For a clear picture of file dependencies, use the diagrams tool to generate a file dependency
diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic
predicates cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private
predicate allows the compiler to optimize local calls to the database methods (e.g. assertz/1 and retract/1)
that modify the predicate.

Sending a message to self implies dynamic binding but there are often cases where (::)/1 is misused to call
an imported or inherited predicate that is never going to be redefined in a descendant. In these cases,
a super call, (^^)/1, can be used instead with the benefit of often enabling static binding. Most of the
guidelines for writing efficient Prolog code also apply to Logtalk code. In particular, define your predicates
to take advantage of first-argument indexing. In the case of recursive predicates, define them as tail-recursive
predicates whenever possible.

See the section on performance for a detailed discussion on Logtalk performance.

1.14.14 Portable applications

Logtalk is compatible with most modern standards compliant Prolog compilers. However, this does not
necessarily imply that your Logtalk applications will have the same level of portability. If possible, you
should only use in your applications Logtalk built-in predicates and ISO Prolog specified built-in predicates
and arithmetic functions. If you need to use built-in predicates (or built-in arithmetic functions) that may
not be available in other Prolog compilers, you should try to encapsulate the non-portable code in a small
number of objects and provide a portable interface for that code through the use of Logtalk protocols. An
example will be code that access operating-system specific features. The Logtalk compiler can warn you of
the use of non-ISO specified built-in predicates and arithmetic functions by using the portability compiler
flag.

1.14. Writing and running applications 113

The Logtalk Handbook, Release v3.61.0

1.14.15 Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 direc-
tives. This support is similar to the support found in several Prolog systems such as ECLiPSe, GNU Prolog,
SICStus Prolog, SWI-Prolog, XSB, and YAP.

1.14.16 Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble
documenting a predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice over inheritance for defining new ob-
jects (Logtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the
use of non-logical features such as asserts and retracts.

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate
predicate, then the respective directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes.
On the other hand, Logtalk built-in predicates, built-in methods, and message sending control structures are
fully checked for calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance,
the error terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predi-
cates behave as defined in the ISO standard regarding error conditions. In particular, if your Prolog compiler
does not support a read_term/3 built-in predicate compliant with the ISO Prolog Standard definition, then
the current version of the Logtalk compiler may not be able to detect misspell variables in your source code.

1.14.17 Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop.
When defining entity code, both directives and predicates, Prolog coding style guidelines may be applied.
All Logtalk source files, examples, and standard library entities use tabs (the recommended setting is a tab
width equivalent to 4 spaces) for laying out code. Closed related entities can be defined in the same source
file. However, for best performance, is often necessary to have an entity per source file. Entities that might
be useful in different contexts (such as library entities) are best defined in their own source files.

A detailed coding style guide is available at the Logtalk official website.

1.15 Printing messages and asking questions

Applications, components, and libraries often print all sorts of messages. These include banners, logging,
debugging, and computation results messages but also, in some cases, user interaction messages. However,
the authors of applications, components, and libraries often cannot anticipate the context where their soft-
ware will be used and thus decide which and when messages should be displayed, suppressed, or diverted.
Consider the different components in a Logtalk application development and deployment. At the base level,
you have the Logtalk compiler and runtime. The compiler writes messages related to e.g. compiling and
loading files, compiling entities, compilation warnings and errors. The runtime may write banner messages
or throw execution errors that may result in printing human-level messages. The development environment

114 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT needs to inter-
cept the Logtalk compiler and runtime messages to present the relevant information using its GUI. Then
you have all the other components in a typical application. For example, your own libraries and third-party
libraries. The libraries may want to print messages on its own, e.g. banners, debugging information, or
logging information. As you assemble all your application components, you want to have the final word on
which messages are printed, where, and when. Uncontrolled message printing by libraries could potentially
disturb application flow, expose implementation details, spam the user with irrelevant details, or break user
interfaces.

The solution is to decouple the calls to print a message from the actual printing of the output text. The same
is true for calls to read user input. By decoupling the call to input some data from the actual read of the
data, we can easily switched e.g. from a command-line interface to a GUI input dialog or even automate
providing the data (e.g. when automating testing of user interaction).

Logtalk provides a solution based on the structured message printing mechanism that was introduced by
Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks to Richard O’Keefe for the
historical bits). This mechanism gives the programmer full control of message printing, allowing it to filter,
rewrite, or redirect any message. Variations of this mechanism can also be found in some Prolog systems
including SICStus Prolog, SWI-Prolog, and YAP. Based on this mechanism, Logtalk introduces an extension
that also allows abstracting asking a user for input. Both mechanisms are implemented by the logtalk built-
in object and described in this section. The message printing mechanism is extensively used by the Logtalk
compiler itself and by the developer tools. The question asking mechanism is used e.g. in the debugger tool.

1.15.1 Printing messages

The main predicate for printing a message is logtalk::print_message/3. A simple example, using the Logtalk
runtime is:

| ?- logtalk::print_message(banner, core, banner).

Logtalk 3.23.0
Copyright (c) 1998-2018 Paulo Moura
yes

The first argument of the predicate is the kind of message that we want to print. In this case, we use banner
to indicate that we are printing a product name and copyright banner. An extensive list of message kinds is
supported by default:

banner
banner messages (used e.g. when loading tools or main application components; can be suppressed by
setting the report flag to warnings or off)

help
messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)

information and information(Group)
messages usually printed in reply to a user request for information

silent and silent(Group)
not printed by default (but can be intercepted using the message_hook/4 predicate)

comment and comment(Group)
useful but usually not essential messages (can be suppressed by setting the report flag to warnings or
off)

warning and warning(Group)
warning messages (generated e.g. by the compiler; can be suppressed by turning off the report flag)

1.15. Printing messages and asking questions 115

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

error and error(Group)
error messages (generated e.g. by the compiler)

debug, debug(Group)
debugging messages (by default, only printed when the debug flag is turned on; the print_message/3
goals for these messages are suppressed by the compiler when the optimize flag is turned on)

question, question(Group)
questions to a user

Using a compound term allows easy partitioning of messages of the same kind in different groups. Note
that you can define your own alternative message kind identifiers, for your own components, together with
suitable definitions for their associated prefixes and output streams.

The second argument of print_message/3 represents the component defining the message being printed.
Here component is a generic term that can designate e.g a tool, a library, or some sub-system in a large
application. In our example, the component name is core, identifying the Logtalk compiler/runtime. This
argument was introduced to provide multiple namespaces for message terms and thus simplify programming-
in-the-large by allowing easy filtering of all messages from a specific component and also avoiding conflicts
when two components happen to define the same message term (e.g. banner). Users should choose and
use a unique name for a component, which usually is the name of the component itself. For example, all
messages from the lgtunit tool use lgtunit for the component argument. The compiler and runtime are
interpreted as a single component designated as core.

The third argument of print_message/3 is the message itself, represented by a term. In the above example,
the message term is banner. Using a term to represent a message instead of a string with the message text
itself have significant advantages. Notably, it allows using a compound term for easy parameterization of the
message text and simplifies machine-processing, localization of applications, and message interception. For
example:

| ?- logtalk::print_message(comment, core, redefining_entity(object, foo)).

% Redefining object foo
yes

1.15.2 Message tokenization

The advantages of using message terms require a solution for generating the actual messages text. This
is supported by defining grammar rules for the logtalk::message_tokens//2 multifile non-terminal, which
translates a message term, for a given component, to a list of tokens. For example:

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

The following tokens can be used when translating a message:

at_same_line
Signals a following part to a multi-part message with no line break in between; this token is ignored
when it’s not the first in the list of tokens

flush
Flush the output stream (by calling the flush_output/1 standard predicate)

116 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

nl
Change line in the output stream

Format-Arguments
Format must be an atom and Arguments must be a list of format arguments (the token arguments are
passed to a call to the format/3 de facto standard predicate)

term(Term, Options)
Term can be any term and Options must be a list of valid write_term/3 output options (the token
arguments are passed to a call to the write_term/3 standard predicate)

ansi(Attributes, Format, Arguments)
Taken from SWI-Prolog; by default, do nothing; can be used for styled output

begin(Kind, Var)
Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to wrap a sequence
of message tokens

end(Var)
Taken from SWI-Prolog; by default, do nothing

The logtalk object also defines public predicates for printing a list of tokens, for hooking into printing an
individual token, and for setting default output stream and message prefixes. For example, the SWI-Prolog
adapter file uses the print message token hook predicate to enable coloring of messages printed on a console.

1.15.3 Meta-messages

Defining tokenization rules for every message is not always necessary, however. Logtalk defines several meta-
messages that are handy for simple cases and temporary messages only used to help developing, notably
debugging messages. See the Debugging messages section and the logtalk built-in object remarks section for
details.

1.15.4 Intercepting messages

Calls to the logtalk::print_message/3 predicate can be intercepted by defining clauses for the
logtalk::message_hook/4 multifile hook predicate. This predicate can suppress, rewrite, and divert messages.

As a first example, assume that you want to make Logtalk startup less verbose by suppressing printing of the
default compiler flag values. This can be easily accomplished by defining the following category in a settings
file:

:- category(my_terse_logtalk_startup_settings).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(default_flags, comment(settings), core, _).

:- end_category.

The printing message mechanism automatically calls the message_hook/4 hook predicate. When this call
succeeds, the mechanism assumes that the message have been successfully handled.

As another example, assume that you want to print all otherwise silent compiler messages:

1.15. Printing messages and asking questions 117

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

:- category(my_verbose_logtalk_message_settings).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(_Message, silent, core, Tokens) :-
logtalk::message_prefix_stream(comment, core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

logtalk::message_hook(_Message, silent(Key), core, Tokens) :-
logtalk::message_prefix_stream(comment(Key), core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

:- end_category.

This example calls the logtalk::message_prefix_stream/4 hook predicate, which can be used to define a mes-
sage line prefix and an output stream for printing messages for a given component.

1.15.5 Asking questions

Logtalk structured question asking mechanism complements the message printing mechanism. It provides an
abstraction for the common task of asking a user a question and reading back its reply. By default, this mech-
anism writes the question, writes a prompt, and reads the answer using the current user input and output
streams but allows all steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are
using a GUI dialog for asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the
question text and a prompt. It provides an asking predicate and a hook predicate, both declared and defined
in the logtalk built-in object. The asking predicate, logtalk::ask_question/5, is used for ask a question and
read the answer. Assume that we defined the following message tokenization and question prompt and
stream:

:- category(hitchhikers_guide_to_the_galaxy).

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

% abstract the question text using the atom ultimate_question;
% the second argument, hitchhikers, is the application component
logtalk::message_tokens(ultimate_question, hitchhikers) -->

['The answer to the ultimate question of life, the universe and everything is?'-[],␣
→˓nl].

:- multifile(logtalk::question_prompt_stream/4).
:- dynamic(logtalk::question_prompt_stream/4).

% the prompt is specified here instead of being part of the question text
% as it will be repeated if the answer doesn't satisfy the question closure
logtalk::question_prompt_stream(question, hitchhikers, '> ', user_input).

:- end_category.

After compiling and loading this category, we can now ask the ultimate question:

118 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

The answer to the ultimate question of life, the universe and everything is?
> 42.

N = 42
yes

Note that the fourth argument, '=='(42) in our example, is a closure that is used to check the answers
provided by the user. The question is repeated until the goal constructed by extending the closure with the
user answer succeeds. For example:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).
The answer to the ultimate question of life, the universe and everything is?
> icecream.
> tea.
> 42.

N = 42
yes

Practical usage examples of this mechanism can be found e.g. in the debugger tool where it’s used to abstract
the user interaction when tracing a goal execution in debug mode.

1.15.6 Intercepting questions

Calls to the logtalk::ask_question/5 predicate can be intercepted by defining clauses for the
logtalk::question_hook/6 multifile hook predicate. This predicate can suppress, rewrite, and divert ques-
tions. For example, assume that we want to automate testing and thus cannot rely on someone manually
providing answers:

:- category(hitchhikers_fixed_answers).

:- multifile(logtalk::question_hook/6).
:- dynamic(logtalk::question_hook/6).

logtalk::question_hook(ultimate_question, question, hitchhikers, _, _, 42).

:- end_category.

After compiling and loading this category, trying the question again will now skip asking the user:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

N = 42
yes

In a practical case, the fixed answer would be used for followup goals being tested. The question answer
read loop (which calls the question check closure) is not used when a fixed answer is provided using the
logtalk::question_hook/6 predicate thus preventing the creation of endless loops. For example, the fol-
lowing query succeeds:

1.15. Printing messages and asking questions 119

The Logtalk Handbook, Release v3.61.0

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(41), N).

N = 42
yes

Note that the logtalk::question_hook/6 predicate takes as argument the closure specified in the
logtalk::ask_question/5 call, allowing a fixed answer to be checked before being returned.

1.16 Term and goal expansion

Logtalk supports a term and goal expansion mechanism that can be used to define source-to-source transfor-
mations. Two common uses are the definition of language extensions and domain-specific languages.

Logtalk improves upon the term-expansion mechanism found on some Prolog systems by providing the user
with fine-grained control on if, when, and how expansions are applied. It allows declaring in a source file
itself which expansions, if any, will be used when compiling it. It allows declaring which expansions will be
used when compiling a file using compile and loading predicate options. It defines a concept of hook objects
that can be used as building blocks to create custom and reusable expansion workflows with explicit and well
defined semantics. It prevents the simply act of loading expansion rules affecting subsequent compilation of
files. It prevents conflicts between groups of expansion rules of different origins. It avoids a set of buggy
expansion rules from breaking other sets of expansions rules.

1.16.1 Defining expansions

Term and goal expansions are defined using, respectively, the predicates term_expansion/2 and
goal_expansion/2, which are declared in the expanding built-in protocol. Note that, unlike Prolog systems
also providing these two predicates, they are not declared as multifile predicates in the protocol. This design
decision is key to give the programmer full control of the expansion process and prevent the problems that
inflict most Prolog system providing a term-expansion mechanism.

An example of an object defining expansion rules:

:- object(an_object,
implements(expanding)).

term_expansion(ping, pong).
term_expansion(

colors,
[white, yellow, blue, green, read, black]

).

goal_expansion(a, b).
goal_expansion(b, c).
goal_expansion(X is Expression, true) :-

catch(X is Expression, _, fail).

:- end_object.

These predicates can be explicitly called using the expand_term/2 and expand_goal/2 built-in methods or
called automatically by the compiler when compiling a source file (see the section below on hook objects).

Clauses for the term_expansion/2 predicate are called until of them succeeds. The returned expansion can
be a single term or a list of terms. For example:

120 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

| ?- an_object::expand_term(ping, Term).

Term = pong
yes

| ?- an_object::expand_term(colors, Colors).

Colors = [white, yellow, blue, green, read, black]
yes

When no term_expansion/2 clause applies, the same term that we are trying to expand is returned:

| ?- an_object::expand_term(sounds, Sounds).

Sounds = sounds
yes

Clauses for the goal_expansion/2 predicate are recursively called on the expanded goal until a fixed point is
reached. For example:

| ?- an_object::expand_goal(a, Goal).

Goal = c
yes

| ?- an_object::expand_goal(X is 3+2*5, Goal).

X = 13,
Goal = true
yes

When no goal_expansion/2 clause applies, the same goal that we are trying to expand is returned:

| ?- an_object::expand_goal(3 =:= 5, Goal).

Goal = (3=:=5)
yes

The goal-expansion mechanism prevents an infinite loop when expanding a goal by checking that a goal
to be expanded does not resulted from a previous expansion of the same goal. For example, consider the
following object:

:- object(fixed_point,
implements(expanding)).

goal_expansion(a, b).
goal_expansion(b, c).
goal_expansion(c, (a -> b; c)).

:- end_object.

The expansion of the goal a results in the goal (a -> b; c) with no attempt to further expand the a, b, and
c goals as they have already been expanded.

1.16. Term and goal expansion 121

The Logtalk Handbook, Release v3.61.0

1.16.2 Expanding grammar rules

A common term expansion is the translation of grammar rules into predicate clauses. This transformation
is performed automatically by the compiler when a source file entity defines grammar rules. It can also be
done explicitly by calling the expand_term/2 built-in method. For example:

| ?- logtalk::expand_term((a --> b, c), Clause).

Clause = (a(A,B) :- b(A,C), c(C,B))
yes

Note that the default translation of grammar rules can be overridden by defining clauses for the
term_expansion/2 predicate.

1.16.3 Bypassing expansions

Terms and goals wrapped by the {}/1 control construct are not expanded. For example:

| ?- an_object::expand_term({ping}, Term).

Term = {ping}
yes

| ?- an_object::expand_goal({a}, Goal).

Goal = {a}
yes

This also applies to source file terms and source file goals when using hook objects (discussed next).

1.16.4 Hook objects

Term and goal expansion of a source file during its compilation is performed by using hook objects. A hook
object is simply an object implementing the expanding built-in protocol and defining clauses for the term
and goal expansion hook predicates. Hook objects must be compiled and loaded prior to be used to expand
a source file.

To compile a source file using a hook object, we can use the hook compiler flag in the second argument of
the logtalk_compile/2 and logtalk_load/2 built-in predicates. For example:

| ?- logtalk_load(source_file, [hook(hook_object)]).
...

In alternative, we can use a set_logtalk_flag/2 directive in the source file itself. For example:

:- set_logtalk_flag(hook, hook_object).

To use multiple hook objects in the same source file, simple write each directive before the block of code that
it should handle. For example:

:- object(h1,
implements(expanding)).

(continues on next page)

122 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

term_expansion((:- public(a/0)), (:- public(b/0))).
term_expansion(a, b).

:- end_object.

:- object(h2,
implements(expanding)).

term_expansion((:- public(a/0)), (:- public(c/0))).
term_expansion(a, c).

:- end_object.

:- set_logtalk_flag(hook, h1).

:- object(s1).

:- public(a/0).
a.

:- end_object.

:- set_logtalk_flag(hook, h2).

:- object(s2).

:- public(a/0).
a.

:- end_object.

| ?- {h1, h2, s}.
...

| ?- s1::b.
yes

| ?- s2::c.
yes

It is also possible to define a default hook object by defining a global value for the hook flag by calling the
set_logtalk_flag/2 predicate. For example:

| ?- set_logtalk_flag(hook, hook_object).

yes

Note that, due to the set_logtalk_flag/2 directive being local to a source, file, using it to specify a hook
object will override any defined default hook object or any hook object specified as a logtalk_compile/2 or
logtalk_load/2 predicate compiler option for compiling or loading the source file.

1.16. Term and goal expansion 123

The Logtalk Handbook, Release v3.61.0

Note: Clauses for the term_expansion/2 and goal_expansion/2 predicates defined within an object or a
category are never used in the compilation of the object or the category itself.

1.16.5 Virtual source file terms and loading context

When using a hook object to expand the terms of a source file, two virtual file terms are generated:
begin_of_file and end_of_file. These terms allow the user to define term-expansions before and after
the actual source file terms.

Logtalk also provides a logtalk_load_context/2 built-in predicate that can be used to access the compila-
tion/loading context when performing expansions. The logtalk built-in object also provides a set of predi-
cates that can be useful, notably when adding Logtalk support for languages extensions originally developed
for Prolog.

As an example of using the virtual terms and the logtalk_load_context/2 predicate, assume that you want
to convert plain Prolog files to Logtalk by wrapping the Prolog code in each file using an object (named after
the file) that implements a given protocol. This could be accomplished by defining the following hook object:

:- object(wrapper(_Protocol_),
implements(expanding)).

term_expansion(begin_of_file, (:- object(Name,implements(_Protocol_)))) :-
logtalk_load_context(file, File),
os::decompose_file_name(File,_ , Name, _).

term_expansion(end_of_file, (:- end_object)).

:- end_object.

Assuming e.g. my_car.pl and lease_car.pl files to be wrapped and a car_protocol protocol, we could then
load them using:

| ?- logtalk_load(
['my_car.pl', 'lease_car.pl'],
[hook(wrapper(car_protocol))]

).

yes

Note: When a source file also contains plain Prolog directives and predicates, these are term-expanded but
not goal-expanded (with the exception of the initialization/1, if/, and elif/1 directives, where the goal
argument is expanded to improve code portability across backends).

124 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.16.6 Default compiler expansion workflow

When compiling a source file, the compiler will first try, by default, the source file specific hook object specified
using a local set_logtalk_flag/2 directive, if defined. If that expansion fails, it tries the hook object specified
using the hook/1 compiler option in the logtalk_compile/2 or logtalk_load/2 goal that compiles or loads
the file, if defined. If that expansion fails, it tries the default hook object, if defined. If that expansion also
fails, the compiler tries the Prolog dialect specific expansion rules found in the adapter file (which are used
to support non-standard Prolog features).

1.16.7 User defined expansion workflows

Sometimes we have multiple hook objects that we need to combine and use in the compilation of a source
file. Logtalk includes a hook_flows library that supports two basic expansion workflows: a pipeline of hook
objects, where the expansion results from a hook object are feed to the next hook object in the pipeline,
and a set of hook objects, where expansions are tried until one of them succeeds. These workflows are
implemented as parametric objects allowing combining them to implement more sophisticated expansion
workflows. There is also a hook_objects library that provides convenient hook objects for defining custom
expansion workflows. This library includes an hook object that can be used to restore the default expansion
workflow used by the compiler.

For example, assuming that you want to apply the Prolog backend specific expansion rules defined in its
adapter file, using the backend_adapter_hook library object, passing the resulting terms to your own expan-
sion when compiling a source file, we could use the goal:

| ?- logtalk_load(
source,
[hook(hook_pipeline([backend_adapter_hook, my_expansion]))]

).

As a second example, we can prevent expansion of a source file using the library object identity_hook by
adding as the first term in a source file the directive:

:- set_logtalk_flag(hook, identity_hook).

The file will be compiled as-is as any hook object (specified as a compiler option or as a default hook object)
and any backend adapter expansion rules are overriden by the directive.

1.16.8 Using Prolog defined expansions

In order to use clauses for the term_expansion/2 and goal_expansion/2 predicates defined in plain Prolog,
simply specify the pseudo-object user as the hook object when compiling source files. When using backend
Prolog compilers that support a module system, it can also be specified a module containing clauses for the
expanding predicates as long as the module name doesn’t coincide with an object name. When defining a
custom workflow, the library object prolog_module_hook/1 can be used as a workflow step. For example,
assuming a module functions defining expansion rules that we want to use:

| ?- logtalk_load(
source,
[hook(hook_set([prolog_module_hook(functions), my_expansion]))]

).

But note that Prolog module libraries may provide definitions of the expansion predicates that are not com-
patible with the Logtalk compiler. Specially when setting the hook object to user, be aware of any Prolog

1.16. Term and goal expansion 125

../../docs/hook_pipeline_1.html#hook-pipeline-1
../../docs/hook_set_1.html#hook-set-1
../../docs/backend_adapter_hook_0.html#backend-adapter-hook-0
../../docs/identity_hook_0.html#identity-hook-0
../../docs/prolog_module_hook_1.html#prolog-module-hook-1

The Logtalk Handbook, Release v3.61.0

library that is loaded, possibly by default or implicitly by the Prolog system, that may be contributing defini-
tions of the expansion predicates. It is usually safer to define a specific hook object for combining multiple
expansions in a fully controlled way.

Note: The user object declares term_expansion/2 and goal_expansion/2 as multifile and dynamic predi-
cates. This helps in avoiding predicate existence errors when compiling source files with the hook flag set to
user as these predicates are only natively declared in some of the supported backend Prolog compilers.

1.16.9 Debugging expansions

The term_expansion/2 and goal_expansion/2 predicates can be debugged as any other object predicates.
Note that expansions can often be manually tested by sending expand_term/2 and expand_goal/2 messages
to a hook object with the term or goal whose expansion you want to check as argument. An alternative to the
debugging tools is to use a monitor for the runtime messages that call the predicates. For example, assume
a expansions_debug.lgt file with the contents:

:- initialization(
define_events(after, edcg, _, _, expansions_debug)

).

:- object(expansions_debug,
implements(monitoring)).

after(edcg, term_expansion(T,E), _) :-
writeq(term_expansion(T,E)), nl.

:- end_object.

We can use this monitor to help debug the expansion rules of the edcg library when applied to the edcgs
example using the queries:

| ?- {expansions_debug}.
...

| ?- set_logtalk_flag(events, allow).
yes

| ?- {edcgs(loader)}.
...
term_expansion(begin_of_file,begin_of_file)
term_expansion((:-object(gemini)),[(:-object(gemini)),(:-op(1200,xfx,-->>))])
term_expansion(acc_info(castor,A,B,C,true),[])
term_expansion(pass_info(pollux),[])
term_expansion(pred_info(p,1,[castor,pollux]),[])
term_expansion(pred_info(q,1,[castor,pollux]),[])
term_expansion(pred_info(r,1,[castor,pollux]),[])
term_expansion((p(A)-->>B is A+1,q(B),r(B)),(p(A,C,D,E):-B is A+1,q(B,C,F,E),r(B,F,D,E)))
term_expansion((q(A)-->>[]),(q(A,B,B,C):-true))
term_expansion((r(A)-->>[]),(r(A,B,B,C):-true))
term_expansion(end_of_file,end_of_file)
...

126 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

This solution does not require compiling the edcg hook object in debug mode or access to its source code
(e.g. to modify its expansion rules to emit debug messages. We could also simply use the user pseudo-object
as the monitor object:

| ?- assertz((
after(_, term_expansion(T,E), _) :-

writeq(term_expansion(T,E)), nl
)).

yes

| ?- define_events(after, edcg, _, Sender, user).
yes

Another alternative is to use a pipeline of hook objects with the library hook_pipeline/1 and
write_to_stream_hook objects to write the expansion results to a file. For example, using the unique.lgt
test file from the edcgs library directory:

| ?- {hook_flows(loader), hook_objects(loader)}.
...

| ?- open('unique_expanded.lgt', write, Stream),
logtalk_compile(

unique,
[hook(hook_pipeline([edcg,write_to_stream_hook(Stream,[quoted(true)])]))]

),
close(Stream).

...

The generated unique_expanded.lgt file will contain the clauses resulting from the expansion of the EDCG
rules found in the unique.lgt file by the edcg hook object expansion.

1.17 Documenting

Assuming that the source_data flag is turned on, the compiler saves all relevant documenting information
collected when compiling a source file. The provided lgtdoc tool can access this information by using the
reflection support and generate a documentation file for each compiled entity (object, protocol, or category)
in XML format. Contents of the XML file include the entity name, type, and compilation mode (static
or dynamic), the entity relations with other entities, and a description of any declared predicates (name,
compilation mode, scope, . . .). The XML documentation files can be enriched with arbitrary user-defined
information, either about an entity or about its predicates, by using the two directives described in the next
section. The lgtdoc tool includes POSIX and Windows scripts for converting the XML documentation files to
several final formats (such as HTML and PDF).

1.17. Documenting 127

The Logtalk Handbook, Release v3.61.0

1.17.1 Documenting directives

Logtalk supports two documentation directives for providing arbitrary user-defined information about an
entity or a predicate. These two directives complement other directives that also provide important docu-
mentation information such as the mode/2 and meta_predicate/1 directives.

Entity directives

Arbitrary user-defined entity information can be represented using the info/1 directive:

:- info([
Key1 is Value1,
Key2 is Value2,
...

]).

In this pattern, keys should be atoms and values should be bound terms. The following keys are predefined
and may be processed specially by Logtalk tools:

comment
Comment describing the entity purpose (an atom). End the comment with a period (full stop). As
a style guideline, don’t use overly long comments. If you need to provide additional details, use the
remarks key.

author
Entity author(s) (an atom or a compound term {entity} where entity is the name of an XML entity
in a user defined custom.ent file).

version
Version number (a Major:Minor:Patch compound term) Following the Semantic Versioning guidelines
is strongly advised.

date
Date of last modification in ISO 8601 standard format (Year-Month-Day where Year, Month, and Day
are integers).

parameters
Parameter names and descriptions for parametric entities (a list of Name-Description pairs where both
names and descriptions are atoms). End the Description with a period (full stop).

parnames
Parameter names for parametric entities (a list of atoms; a simpler version of the previous key, used
when parameter descriptions are deemed unnecessary).

copyright
Copyright notice for the entity source code (an atom or a compound term {entity} where entity is
the name of an XML entity defined in a user defined custom.ent file).

license
License terms for the entity source code; usually, just the license name (an atom or a compound term
{entity} where entity is the name of an XML entity in a user defined custom.ent file).

remarks
List of general remarks about the entity using Topic-Text pairs where both the topic and the text must
be atoms. End the Text with a period (full stop).

see_also
List of related entities (using the entity identifiers, which can be atoms or compound terms).

128 Chapter 1. User Manual

https://semver.org

The Logtalk Handbook, Release v3.61.0

For example:

:- info([
version is 2:1:0,
author is 'Paulo Moura',
date is 2000-11-20,
comment is 'Building representation.',
diagram is 'UML Class Diagram #312'

]).

Use only the keywords that make sense for your application and remember that you are free to invent your
own keywords. All key-value pairs can be retrieved programmatically using the reflection API and are visible
to the lgtdoc tool (which includes them in the generated documentation).

Predicate directives

Arbitrary user-defined predicate information can be represented using the info/2 directive:

:- info(Name/Arity, [
Key1 is Value1,
Key2 is Value2,
...

]).

The first argument can also a grammar rule non-terminal indicator, Name//Arity. Keys should be atoms and
values should be bound terms. The following keys are predefined and may be processed specially by Logtalk
tools:

comment
Comment describing the predicate (or non-terminal) purpose (an atom). End the comment with a
period (full stop). As a style guideline, don’t use overly long comments. If you need to provide
additional details, use the remarks key.

arguments
Names and descriptions of predicate arguments for pretty print output (a list of Name-Description
pairs where both names and descriptions are atoms). End the Description with a period (full stop).

argnames
Names of predicate arguments for pretty print output (a list of atoms; a simpler version of the previous
key, used when argument descriptions are deemed unnecessary).

allocation
Objects where we should define the predicate. Some possible values are container, descendants,
instances, classes, subclasses, and any.

redefinition
Describes if predicate is expected to be redefined and, if so, in what way. Some possible values are
never, free, specialize, call_super_first, call_super_last.

exceptions
List of possible exceptions throw by the predicate using Description-Exception pairs. The description
must be an atom. The exception term must be a ground term.

examples
List of typical predicate call examples using the format Description-Goal-Bindings. The description
must be an atom with the goal sharing variables with the bindings. The variable bindings term uses

1.17. Documenting 129

The Logtalk Handbook, Release v3.61.0

the format {Variable = Term, ...}. When there are no variable bindings, the success or failure of the
predicate call should be represented by the terms {yes} or {no}, respectively.

remarks
List of general remarks about the predicate using Topic-Text pairs where both the topic and the text
must be atoms. End the Text with a period (full stop).

see_also
List of related predicates and non-terminals (using the predicate and non-terminal indicators).

For example:

:- info(color/1, [
comment is 'Table of defined colors.',
argnames is ['Color'],
constraint is 'Up to four visible colors allowed.'

]).

As with the info/1 directive, use only the keywords that make sense for your application and remember that
you are free to invent your own keywords. All key-value pairs can also be retrieved programmatically using
the reflection API and are visible to the lgtdoc tool (which includes them in the generated documentation).

Documenting predicate exceptions

As described above, the info/2 predicate directive supports an exceptions key that allows us to list all
exceptions that may occur when calling a predicate. For example:

:- info(check_option/1, [
comment is 'Succeeds if the option is valid. Throws an error otherwise.',
argnames is ['Option'],
exceptions is [

'``Option`` is a variable' - instantiation_error,
'``Option`` is neither a variable nor a compound term' - type_error(compound, 'Option

→˓'),
'``Option`` is a compound term but not a valid option' - domain_error(option, 'Option

→˓')
]

]).

When possible, only standard exceptions should be used. See e.g the error handling methods section for a
full list. The argument names should be the same as those provided in the arguments or argnames keys.
Exceptions are usually listed starting with instantiation and uninstantiation errors, followed by type errors,
and then domain errors. These may then be followed by permission, existence, evaluation, representation,
or resource errors.

For each exception, use of controlled language as found e.g. in the ISO Prolog Core standard and this
Handbook is advised. Some examples:

Instantiation error when one of more arguments cannot be a variable
Argument is a variable

Argument1 and Argument2 are variables

Instantiation error when a closed list with bound elements is required
Argument is a partial list or a list with an element Element which is a variable

Uninstantiation error when an argument is not a variable
Argument is not a variable

130 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Type error when an argument is not a variable but also not of the expected type
Argument is neither a variable nor a TYPE

Argument is neither a partial list nor a list

Type error when an element of a list is not a variable but is not of the expected type
An element Element of the Argument list is neither a variable nor a TYPE

Domain error when an argument is of the correct type but not in the expected domain
Argument is a TYPE but not a valid DOMAIN

Argument is an integer that is less than zero

Domain error when an element of a list is of the correct type but not in the expected domain
An element Element of the Argument list is a TYPE but not a valid DOMAIN

Existence error when an entity of a given kind does not exist
The KIND Argument does not exist

Other classes of errors have a less rigid style. In case of doubt, look for examples in this Handbook, in the
APIs documentation, and in standard documents.

1.17.2 Processing and viewing documenting files

The lgtdoc tool generates an XML documenting file per entity. It can also generate library, directory, entity,
and predicate indexes when documenting libraries and directories. For example, assuming the default file-
name extensions, a trace object and a sort(_) parametric object will result in trace_0.xml and sort_1.xml
XML files.

Each entity XML file contains references to two other files, an XML specification file and a XSLT style-sheet
file. The XML specification file can be either a DTD file (logtalk_entity.dtd) or an XML Scheme file
(logtalk_entity.xsd). The XSLT style-sheet file is responsible for converting the XML files to some desired
format such as HTML or PDF. The default names for the XML specification file and the XSL style-sheet file
are defined by the lgtdoc tool but can be overridden by passing a list of options to the tool predicates. The
lgtdoc/xml sub-directory in the Logtalk installation directory contains the XML specification files described
above, along with several sample XSL style-sheet files and sample scripts for converting XML documenting
files to several formats (e.g. reStructuredText, Markdown, HTML, and PDF). For example, assume that you
want to generate the API documentation for the types library:

| ?- {types(loader)}.
....

| ?- {lgtdoc(loader)}.
....

| ?- lgtdoc::library(types).
...

The above queries will result in the creation of a xml_docs in your current directory by default. Assuming
that we want to generate Sphinx-based documentation and that we are using a POSIX operating-system, the
next steps would be:

$ cd xml_docs
$ lgt2rst -s -m

The lgt2rst script will ask a few questions (project name, author, version, . . .). After its completion, the
generated HTML files will be found in the _build/html directory by default:

1.17. Documenting 131

The Logtalk Handbook, Release v3.61.0

$ open _build/html/index.html

For Windows operating-systems, PowerShell (recommended) and JScript (legacy) scripts are available. For
example, assuming that we want to generate HTML documentation, we could run in a PowerShell window:

cd xml_docs
lgt2html.ps1 -p saxon

When using the legacy JScript scripts, you can also use the .bat script alternatives:

cd xml_docs
lgt2html /p:saxon

After completion, the generated HTML files will be found in the xml_docs directory by default.

See the NOTES file in the tool directory for details, specially on the XSLT processor dependencies. You may use
the supplied sample files as a starting point for generating the documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a user-customizable file, custom.ent,
which declares XML entities for source code author names, license terms, and copyright string. After editing
the custom.ent file to reflect your personal data, you may use the XML entities on info/1 documenting
directives. For example, assuming that the XML entities are named author, license, and copyright we may
write:

:- info([
version is 1:1:0,
author is {author},
license is {license},
copyright is {copyright}

]).

The entity references are replaced by the value of the corresponding XML entity when the XML documenting
files are processed (not when they are generated; this notation is just a shortcut to take advantage of XML
entities).

The lgtdoc tool supports a set of options that can be used to control the generation of the XML documentation
files. See the tool documentation for details. There is also a doclet tool that allows automating the steps
required to generate the documentation for an application.

1.17.3 Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown or reStructuredText syntax and
converting XML documenting files to Markdown or reStructuredText files (and these, if required, to e.g.
HTML, ePub, or PDF formats). Note that Markdown and reStructuredText common syntax elements are
enough for most API documentation:

Mark *italic text* with one asterisk.
Mark **bold text** with two asterisks.
Mark ``monospaced text`` with two backquotes.

Rendering this block as markup gives:

Mark italic text with one asterisk. Mark bold text with two asterisks. Mark monospaced text with
two backquotes.

132 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

As single backquotes have different purposes in Markdown (monospaced text) and reStructuredText
(domain- or application-dependent meaning), never use them. This also avoids doubts if there’s an inline
formatting typo in text meant to be rendered as monospaced text (usually inline code fragments).

1.17.4 Diagrams

The diagrams tool supports a wide range of diagrams that can also help in documenting an application. The
generated diagrams can include URL links to both source code and API documentation. They can also be
linked, connecting for example high level diagrams to detail diagrams. These features allow diagrams to be
an effective solution for navigating and understanding the structure and implementation of an application.
This tool uses the same reflection API as the lgtdoc tool and thus have access to the same source data. See
the tool documentation for details.

1.18 Debugging

The Logtalk distribution includes a command-line debugger tool implemented as a Logtalk application. It can
be loaded by typing:

| ?- logtalk_load(debugger(loader)).

It can also be loaded automatically at startup time by using a settings file. This tool implements debugging
features similar to those found on most Prolog systems. There are some differences, however, between the
usual implementation of Prolog debuggers and the current implementation of the Logtalk debugger that you
should be aware. First, unlike most Prolog debuggers, the Logtalk debugger is not a built-in feature but
a regular Logtalk application using documented debugging hook predicates. This translates to a different,
although similar, set of debugging features when compared with some of the more sophisticated Prolog
debuggers. Second, debugging is only possible for entities compiled in debug mode. When compiling
an entity in debug mode, Logtalk decorates clauses with source information to allow tracing of the goal
execution. Third, the implementation of spy points allows the user to specify the execution context for
entering the debugger. This feature is a consequence of the encapsulation of predicates inside objects.

1.18.1 Compiling source files in debug mode

Compilation of source files in debug mode is controlled by the debug compiler flag. The default value for this
flag, usually off, is defined in the adapter files. Its default value may be changed at runtime by calling:

| ?- set_logtalk_flag(debug, on).

In alternative, if we want to compile only some source files in debug mode, we may instead write:

| ?- logtalk_load([file1, file2, ...], [debug(on)]).

The logtalk_make/1 built-in predicate can also be used to recompile all loaded files (that were compiled
without using explicit values for the debug and optimize compiler flags in a logtalk_load/2 call or in a
loader file file, if used) in debug mode:

| ?- logtalk_make(debug).

With most backend Prolog compilers, the {+d} top-level shortcut can also be used. After debugging, the files
can be recompiled in normal or optimized mode using, respectively, the {+n} or {+o} top-level shortcuts.

1.18. Debugging 133

The Logtalk Handbook, Release v3.61.0

The clean compiler flag should be turned on whenever the debug flag is turned on at runtime. This is
necessary because debug code would not be generated for files previously compiled in normal mode if there
are no changes to the source files.

After loading the debugger, we may check (or enumerate by backtracking), all loaded entities compiled in
debug mode as follows:

| ?- debugger::debugging(Entity).

To compile only a specific entity in debug mode, use the set_logtalk_flag/2 directive inside the entity.

1.18.2 Procedure box model

Logtalk uses a procedure box model similar to those found on most Prolog systems. The traditional Prolog
procedure box model defines four ports (call, exit, redo, and fail) for describing control flow when calling a
predicate:

call

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, as found on some recent Prolog systems, adds a port for dealing with exceptions thrown when
calling a predicate:

exception

predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports, fact and rule, which show the result
of the unification of a goal with, respectively, a fact and a rule head:

fact

unification success between a goal and a fact
rule

unification success between a goal and a rule head

Following Prolog tradition, the user may define for which ports the debugger should pause for user interac-
tion by specifying a list of leashed ports. For example:

| ?- debugger::leash([call, exit, fail]).

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

134 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

| ?- debugger::leash(loose).

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none

[]

loose

[fact, rule, call]

half

[fact, rule, call, redo]

tight

[fact, rule, call, redo, fail, exception]

full

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

1.18.3 Defining spy points

Logtalk spy points can be defined by simply stating which predicates should be spied, as in most Prolog
debuggers, by stating which predicate clauses to spy given their source file line numbers, or by specifying
the context for activating a spy point. In the case of line number spy points (also known as breakpoints), the
line number must correspond to the first line of an entity clause. To simplify the definition of line number
spy points, these are specified using the entity identifier instead of the file name (as all entities share a single
namespace, an entity can only be defined in a single file).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the debugger spy/1 predicate. The argument can
be a breakpoint (expressed as a Entity-Line pair), a predicate indicator (Name/Arity), or a list of spy points.
For example:

| ?- debugger::spy(person-42).

Spy points set.
yes

| ?- debugger::spy(foo/2).

Spy points set.
yes

| ?- debugger::spy([foo/4, bar/1]).

Spy points set.
yes

1.18. Debugging 135

The Logtalk Handbook, Release v3.61.0

Line numbers and predicate spy points can be removed by using the debugger nospy/1 predicate. The
argument can be a spy point, a list of spy points, or a non-instantiated variable in which case all spy points
will be removed. For example:

| ?- debugger::nospy(_).

All matching predicate spy points removed.
yes

In breakpoints, the line number must for the first line of a clause that we want to spy. But note that only some
Prolog backends provide accurate source file term line numbers. Check the debugger tool documentation for
details.

Defining context spy points

A context spy point is a tuple describing a message execution context and a goal:

(Sender, This, Self, Goal)

The debugger is evoked whenever the spy point goal and the specified execution context subsumes the goal
currently being executed and its execution context. The user may establish any number of context spy points
as necessary. For example, in order to call the debugger whenever a predicate defined on an object named
foo is called we may define the following spy point:

| ?- debugger::spy(_, foo, _, _).

Spy point set.
yes

For example, we can spy all calls to a foo/2 predicate with a bar atom in the second argument by setting the
condition:

| ?- debugger::spy(_, _, _, foo(_, bar)).

Spy point set.
yes

The debugger nospy/4 predicate may be used to remove all matching spy points. For example, the call:

| ?- debugger::nospy(_, _, foo, _).

All matching context spy points removed.
yes

will remove all context spy points where the value of self matches the atom foo.

136 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

Removing all spy points

We may remove all line number, predicate, and context spy points by using the debugger nospyall/0 predi-
cate:

| ?- debugger::nospyall.

All line number spy points removed.
All predicate spy points removed.
All context spy points removed.
yes

1.18.4 Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace
mode, write:

| ?- debugger::trace.

yes

Next, type the query to be debugged. For examples, using the family example in the Logtalk distribution
compiled for debugging:

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1082,_1104) ?
Rule: (1) sister(_1082,_1104) ?
Call: (2) ::female(_1082) ?
Call: (3) female(_1082) ?
Fact: (3) female(morticia) ?

*Exit: (3) female(morticia) ?
*Exit: (2) ::female(morticia) ?
...

While tracing, the debugger will pause for user input at each leashed port, printing an informative message.
Each trace line starts with the port, followed by the goal invocation number, followed by the goal. The
invocation numbers are unique and allows us to correlate the ports used for a goal. In the output above,
you can see for example that the goal ::female(_1082) succeeds with the answer ::female(morticia). The
debugger also provides determinism information by prefixing the exit port with a * character when a call
succeeds with choice-points pending, thus indicating that there might be alternative solutions for the goal.

Note that, when tracing, spy points will be ignored. Before the port number, when a spy point is set for the
current clause or goal, the debugger will print a # character for line number spy points, a + character for
predicate spy points, and a * character for context spy points. For example:

| ?- debugger::spy(female/2).

yes

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1078,_1100) ?
Rule: (1) sister(_1078,_1100) ?
Call: (2) ::female(_1078) ?

+ Call: (3) female(_1078) ?

1.18. Debugging 137

The Logtalk Handbook, Release v3.61.0

To stop tracing and turning off the debugger, write:

| ?- debugger::notrace.

yes

1.18.5 Debugging using spy points

Tracing a program execution may generate large amounts of debugging data. Debugging using spy points
allows the user to concentrate in specific points of the code. To start a debugging session using spy points,
write:

| ?- debugger::debug.

yes

For example, assuming the spy point we set in the previous section on the female/1 predicate:

| ?- addams::sister(Sister, Sibling).
+ Call: (3) female(_1078) ?

To stop the debugger, write:

| ?- debugger::nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

1.18.6 Debugging commands

The debugger pauses at leashed ports when tracing or when finding a spy point for user interaction. The
commands available are as follows:

c — creep
go on; you may use the spacebar, return, or enter keys in alternative

l — leap
continues execution until the next spy point is found

s — skip
skips debugging for the current goal; valid at call, redo, and unification ports

q — quasi-skip
skips debugging until returning to the current goal or reaching a spy point; valid at call and redo ports

r — retry
retries the current goal but side-effects are not undone; valid at the fail port

j — jump
reads invocation number and continues execution until a port is reached for that number

z — zap
reads either a port name and continues execution until that port is reached or a negated port name
and continues execution until a port other than the negated port is reached

138 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

i — ignore
ignores goal, assumes that it succeeded; valid at call and redo ports

f — fail
forces backtracking; may also be used to convert an exception into a failure

n — nodebug
turns off debugging

@ — command; ! can be used in alternative
reads and executes a query

b — break
suspends execution and starts new interpreter; type end_of_file to terminate

a — abort
returns to top level interpreter

Q — quit
quits Logtalk

p — print
writes current goal using the print/1 predicate if available

d — display
writes current goal without using operator notation

w — write
writes current goal quoting atoms if necessary

$ — dollar
outputs the compiled form of the current goal (for low-level debugging)

x — context
prints execution context

. — file
prints file, entity, predicate, and line number information at an unification port

e — exception
prints exception term thrown by the current goal

= — debugging
prints debugging information

< — write depth
sets the write term depth (set to 0 to reset)

* — add
adds a context spy point for the current goal

/ — remove
removes a context spy point for the current goal

+ — add
adds a predicate spy point for the current goal

- — remove
removes a predicate spy point for the current goal

— add
adds a line number spy point for the current clause

1.18. Debugging 139

The Logtalk Handbook, Release v3.61.0

| — remove
removes a line number spy point for the current clause

h — condensed help
prints list of command options

? — extended help
prints list of command options

1.18.7 Customizing term writing

Debugging complex applications often requires customizing term writing. The available options are limiting
the writing depth of large compound terms and defining the traditional portray/1 to define how a term
should be printed when using the p command at a leashed port.

Term write depth

The terms written by the debugger can be quite large depending on the application being debugged. As
described in the previous section, the debugger accepts the < command to set the maximum write term
depth for compound terms. This commmand requires that the used backend Prolog compiler supports the
non-standard but common max_depth/1 option for the write_term/3 predicate. When the compound term
being written is deeply nested, the sub-terms are only written up to the specified depth with the omitted
sub-terms replaced usually by For example:

| ?- write_term([0,1,2,3,4,5,6,7,8,9], [max_depth(5)]).

[0,1,2,3,4|...]
yes

The default maximum depth depends on the backend. To print compound terms without a depth limit, set it
explicitly to zero if necessary.

Custom term writing

The implicit use of the traditional print/1 predicate (using the p command) and the portray/1 user-defined
hook predicate requires backend Prolog compiler support for these predicates. See the documentation of the
backend you intend to use for details. As an example, assuming the following portray/1 definition:

portray(e(V1,V2)) :-
format('~q ---> ~q~n', [V1,V2]).

Calling the print/1 predicate with e.g. a e(x1,x7) compound term argument will output:

| ?- print(e(x1,x7)).

x1 ---> x7
yes

140 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.18.8 Context-switching calls

Logtalk provides a control construct, (<<)/2, which allows the execution of a query within the context of
an object. Common debugging uses include checking an object local predicates (e.g. predicates representing
internal dynamic state) and sending a message from within an object. This control construct may also be
used to write unit tests.

Consider the following toy example:

:- object(broken).

:- public(a/1).

a(A) :- b(A, B), c(B).
b(1, 2). b(2, 4). b(3, 6).
c(3).

:- end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping diagnosing the problem, instead of compiling the object in debug mode and doing a trace of the
query to check the clauses for the non-public predicates, we can instead simply type:

| ?- broken << c(C).

C = 3
yes

The (<<)/2 control construct works by switching the execution context to the object in the first argument
and then compiling and executing the second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).

Self = broken
Sender = broken
This = broken

yes

As exemplified above, the (<<)/2 control construct allows you to call an object local and private predicates.
However, it is important to stress that we are not bypassing or defeating an object predicate scope directives.
The calls take place within the context of the specified object, not within the context of the object making
the (<<)/2 call. Thus, the (<<)/2 control construct implements a form of execution-context switching.

The availability of the (<<)/2 control construct is controlled by the context_switching_calls compiler flag (its
default value is defined in the adapter files of the backend Prolog compilers).

1.18. Debugging 141

The Logtalk Handbook, Release v3.61.0

1.18.9 Debugging messages

Calls to the logtalk::print_message/3 predicate where the message kind is either debug or debug(Group) are
only printed, by default, when the debug flag is turned on. Moreover, these calls are suppressed by the
compiler when the optimize flag is turned on. Note that actual printing of debug messages does not require
compiling the code in debug mode, only turning on the debug flag.

Meta-messages

To avoid having to define message_tokens//2 grammar rules for translating each and every debug message,
Logtalk provides default tokenization for five meta-messages that cover the most common cases:

@Message
By default, the message is printed as passed to the write/1 predicate followed by a newline.

Key-Value
By default, the message is printed as Key: Value followed by a newline. The key is printed as passed
to the write/1 predicate while the value is printed as passed to the writeq/1 predicate.

Format+Arguments
By default, the message is printed as passed to the format/2 predicate.

List
By default, the list items are printed indented one per line. The items are preceded by a dash and can
be @Message, Key-Value, or Format+Arguments messages. If that is not the case, the item is printed as
passed to the writeq/1 predicate.

Title::List
By default, the title is printed followed by a newline and the indented list items, one per line. The
items are printed as in the List meta message.

Some simple examples of using these meta-messages:

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
>>> Phase 1 completed
yes

| ?- logtalk::print_message(debug, core, answer-42).
>>> answer: 42
yes

| ?- logtalk::print_message(debug, core, 'Position: <~d,~d>'+[42,23]).
>>> Position: <42,23>
yes

| ?- logtalk::print_message(debug, core, [arthur,ford,marvin]).
>>> - arthur
>>> - ford
>>> - marvin
yes

(continues on next page)

142 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

| ?- logtalk::print_message(debug, core, names::[arthur,ford,marvin]).
>>> names:
>>> - arthur
>>> - ford
>>> - marvin
yes

The >>> prefix is the default message prefix for debug messages. It can be redefined using the
logtalk::message_prefix_stream/4 hook predicate. For example:

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

logtalk::message_prefix_stream(debug, core, '(dbg) ', user_error).

Selective printing of debug messages

By default, all debug messages are either printed or skipped, depending on the debug and optimize flags.
When the code is not compiled in optimal mode, the debug_messages tool allows selectively enabling of
debug messages per component and per debug group. For example, to enable all debug and debug(Group)
messages for the parser component:

% upon loading the tool, all messages are disabled by default:
| ?- logtalk_load(debug_messages(loader)).
...

% enable both debug and debug(_) messages:
| ?- debug_messages::enable(parser).
yes

To enable only debug(tokenization) messages for the parser component:

% first disable any and all enabled messages:
| ?- debug_messages::disable(parser).
yes

% enable only debug(tokenization) messages:
| ?- debug_messages::enable(parser, tokenization).
yes

See the tool documentation for more details.

1.18. Debugging 143

The Logtalk Handbook, Release v3.61.0

1.18.10 Using the term-expansion mechanism for debugging

Debugging messages only output information by default. These messages can, however, be intercepted
to perform other actions. An alternative is to use instead the term-expansion mechanism for conditional
compilation of debugging goals. For example, the hook_objects library provides a print_goal_hook object
that simplifies printing entity goals before or after calling them by simply prefixing them with an operator.
See the library and hook object documentation for details. You can also define your own specialized hook
objects for custom debugging tasks.

1.18.11 Ports profiling

The Logtalk distribution includes a ports_profiler tool based on the same procedure box model described
above. This tool is specially useful for debugging performance issues (e.g. due to lack of determinism or
unexpected backtracking). See the tool documentation for details.

1.18.12 Debug and trace events

The debugging API defines two multifile predicates, logtalk::trace_event/2 and logtalk::debug_handler/2 for
handiling trace and debug events. It also provides a logtalk::debug_handler_provider/1 multifile predicate
that allows an object (or a category) to declare itself as a debug handler provider. The Logtalk debugger
and ports_profiler tools are regular applications thar are implemented using this API, which can also be
used to implement alternative or new debugging related tools. See the API documentation for details and
the source code of the debugger and ports_profiler tools for usage examples.

1.19 Performance

Logtalk is implemented as a trans-compiler to Prolog. When compiling predicates, it preserves in the gener-
ated Prolog code all cases of first-argument indexing and tail-recursion. In practice, this mean that if you
know how to write efficient Prolog predicates, you already know the basics of how to write efficient Logtalk
predicates.

The Logtalk compiler appends a single argument to the compiled form of all entity predicate clauses. This
hidden argument is used to pass the execution-context when proving a query. In the common case where
a predicate makes no calls to the execution-context predicates and message-sending control constructs and is
neither a meta-predicate nor a coinductive predicate, the execution-context is simply passed between goals.
In this case, with most backend Prolog virtual machines, the cost of this extra argument is null or negligible.
When the execution-context needs to be accessed (e.g. to fetch the value of self for a (::)/1 call) there may
be a small inherent overhead due to the access to the individual arguments of the compound term used to
represent the execution-context.

1.19.1 Source code compilation modes

Source code can be compiled in optimal, normal, or debug mode, depending on the optimize and debug
compiler flags. Optimal mode is used when deploying an application while normal and debug modes are used
when developing an application. Compiling code in optimal mode enables several optimizations, notably
use of static binding whenever enough information is available at compile time. In debug mode, most
optimizations are turned off and the code is instrumented to generate debug events that enable developer
tools such as the command-line debugger and the ports profiler.

144 Chapter 1. User Manual

../../docs/print_goal_hook_0.html#print-goal-hook-0
../../docs/logtalk_0.html#logtalk-0-trace-event-2
../../docs/logtalk_0.html#logtalk-0-debug-handler-2
../../docs/logtalk_0.html#logtalk-0-debug-handler-provider-1

The Logtalk Handbook, Release v3.61.0

1.19.2 Local predicate calls

Local calls to object (or category) predicates have zero overhead in terms of number of inferences, as ex-
pected, compared with local Prolog calls.

1.19.3 Calls to imported or inherited predicates

Assuming the optimize flag is turned on and a static predicate, (^^)/1 calls have zero overhead in terms of
number of inferences.

1.19.4 Calls to module predicates

Local calls from an object (or category) to a module predicate have zero overhead (assuming both the module
and the predicate are bound at compile time).

1.19.5 Messages

Logtalk implements static binding and dynamic binding for message sending calls. For dynamic binding, a
caching mechanism is used by the runtime. It’s useful to measure the performance overhead in number of
inferences compared with plain Prolog and Prolog modules. Note that the number of inferences is a metric
independent of the chosen backend Prolog compiler. The results for Logtalk 3.17.0 and later versions are:

• Static binding: 0

• Dynamic binding (object bound at compile time): 1

• Dynamic binding (object bound at runtime time): 2

Static binding is the common case with libraries and most application code; it requires compiling code with
the optimize flag turned on. Dynamic binding numbers are after the first call (i.e. after the generalization of
the query is cached). All numbers with the events flag set to deny (setting this flag to allow adds an overhead
of 5 inferences to the results above; note that this flag can be defined in a per-object basis as needed instead
of globally and thus minimizing the performance impact).

The dynamic binding caches assume the used backend Prolog compiler does indexing of dynamic predicates.
This is a common feature of modern Prolog systems but the actual details vary from system to system and
may have an impact on dynamic binding performance.

Note that messages to self ((::)/1 calls) always use dynamic binding as the object that receives the message
is only know at runtime.

Messages sent from Prolog modules may use static binding depending on the used backend Prolog compiler
when the optimize flag is turned on. Consult the Prolog compiler adapter file notes for details.

1.19.6 Automatic expansion of built-in meta-predicates

The compiler always expands calls to the forall/2, once/1, and ignore/1 meta-predicates into equivalent
definitions using the negation and conditional control constructs. It also expands calls to the call/1-N,
phrase/2, and phrase/3 meta-predicates when the first argument is bound.

1.19. Performance 145

The Logtalk Handbook, Release v3.61.0

1.19.7 Inlining

When the optimize flag is turned on, the Logtalk compiler performs inlining of predicate calls whenever possi-
ble. This includes calls to Prolog predicates that are either built-in, foreign, or defined in a module (including
user). Inlining notably allows wrapping module or foreign predicates using an object without introducing
any overhead. In the specific case of the execution-context predicates, calls are inlined independently of the
optimize flag value.

1.19.8 Generated code simplification and optimizations

When the optimize flag is turned on, the Logtalk compiler simplifies and optimizes generated clauses (in-
cluding those resulting from the compilation of grammar rules), by flattening conjunctions, folding left
unifications (e.g. generated as a by-product of the compilation of grammar rules), and removing redundant
calls to true/0.

1.19.9 Size of the generated code

The size of the intermediate Prolog code generated by the compiler is proportional to the size of the source
code. Assuming that the term-expansion mechanism is not used, each predicate clause in the source code
is compiled into a single predicate clause. But the Logtalk compiler also generates internal tables for the
defined entities, for the entity relations, and for the declared and defined predicates. These tables enable
support for fundamental features such as inheritance and reflection. The size of these tables is proportional
to the number of entities, entity relations, and predicate declarations and definitions. When the source_data
is turned on (the default when developing an application), the generated code also includes additional data
about the source code such as entity and predicates positions in a source file. This data enables advanced
developer tool functionality but it is usually not required when deploying an application. Thus, turning this
flag off is a common setting for minimizing an application footprint.

1.19.10 Debug mode overhead

Code compiled in debug mode runs slower, as expected, when compared with normal or optimized mode.
The overhead depends on the number of debug events generated when running the application. A debug
event is simply a pass on a call or unification port of the procedure box model. These debug events can be
intercepted by defined clauses for the logtalk::trace_event/2 and logtalk::debug_handler/2 multifile predi-
cates. With no application (such as a debugger or a port profiler) loaded defining clauses for these predicates,
each goal have an overhead of four extra inferences due to the runtime checking for a definition of the hook
predicates and a meta-call of the user goal. The clause head unification events results in one or more in-
ferences per goal (depending on the number of clauses whose head unify with the goal and backtracking).
In practice, this overhead translates to code compiled in debug mode running typically ~2x to ~7x slower
than code compiled in normal or optimized mode depending on the application (the exact overhead is pro-
portional to the number of passes on the call and unification ports; deterministic code often results in a
relatively larger overhead when compared with code performing significant backtracking).

146 Chapter 1. User Manual

../../docs/logtalk_0.html#logtalk-0-trace-event-2
../../docs/logtalk_0.html#logtalk-0-debug-handler-2

The Logtalk Handbook, Release v3.61.0

1.19.11 Other considerations

One aspect of performance, that affects both Logtalk and Prolog code, is the characteristics of the Prolog VM.
The Logtalk distribution includes two examples, bench and benchmarks, to help evaluate performance with
specific backend Prolog systems. A table with benchmark results for a subset of the supported systems is also
available at the Logtalk website. But note that multiple factors affect the performance of an application and
the benchmark examples and their results only provide a partial assessment.

1.20 Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of the
files contained on the Logtalk distribution. For detailed, up-to-date installation and configuration instruc-
tions, please see the README.md, INSTALL.md, and CUSTOMIZE.md files distributed with Logtalk. The broad
compatibility of Logtalk, both with Prolog compilers and operating-systems, together with all the possible
user scenarios, means that installation can vary from very simple by running an installer or a couple of scripts
to the need of patching both Logtalk and Prolog compilers to workaround the lack of strong Prolog standards
or to cope with the requirements of less common operating-systems.

The preferred installation scenario is to have Logtalk installed in a system-wide location, thus available for
all users, and a local copy of user-modifiable files on each user home directory (even when you are the
single user of your computer). This scenario allows each user to independently customize Logtalk and to
freely modify the provided libraries and programming examples. Logtalk installers, installation shell scripts,
and Prolog integration scripts favor this installation scenario, although alternative installation scenarios are
always possible. The installers set two environment variables, LOGTALKHOME and LOGTALKUSER, pointing,
respectively, to the Logtalk installation folder and to the Logtalk user folder.

User applications should preferable be kept outside of the Logtalk user folder created by the installation
process, however, as updating Logtalk often results in updating the contents of this folder. If your applications
depend on customizations to the distribution files, backup those changes before updating Logtalk.

1.20.1 Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a modern, standards compliant,
Prolog compiler available.

Prolog compiler

Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by
Logtalk that are not defined in the official ISO Prolog Core standard include:

• access to predicate properties

• operating-system access predicates

• de facto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property built_in to properly compile objects and categories that con-
tain Prolog built-in predicates calls. In addition, some Logtalk built-ins need to know the dynamic/static
status of predicates to ensure correct application. The ISO standard for Prolog modules defines a
predicate_property/2 predicate that is already implemented by most Prolog compilers. Note that if these
capabilities are not built-in the user cannot easily define them.

1.20. Installing Logtalk 147

https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/bench
https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/benchmarks
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.61.0

For optimal performance, Logtalk requires that the Prolog compiler supports first-argument indexing for
both static and dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard [ISO95], it is advisable that you
try to use the most recent version of your favorite Prolog compiler.

1.20.2 Logtalk installers

Logtalk installers are available for macOS, Linux, and Microsoft Windows. Depending on the chosen installer,
some tasks (e.g. setting environment variables or integrating Logtalk with some Prolog compilers) may need
to be performed manually.

1.20.3 Source distribution

Logtalk sources are available in a tar archive compressed with bzip2, lgt3xxx.tar.bz2. You may expand
the archive by using a decompressing utility or by typing the following commands at the command-line:

% tar -jxvf lgt3xxx.tar.bz2

This will create a sub-directory named lgt3xxx in your current directory. Almost all files in the Logtalk
distribution are text files. Different operating-systems use different end-of-line codes for text files. Ensure
that your decompressing utility converts the end-of-lines of all text files to match your operating system.

1.20.4 Distribution overview

In the Logtalk installation directory, you will find the following files and directories:

BIBLIOGRAPHY.bib – Logtalk bibliography in BibTeX format

CUSTOMIZE.md – Logtalk end-user customization instructions

INSTALL.md – Logtalk installation instructions

LICENSE.txt – Logtalk user license

NOTICE.txt – Logtalk copyright notice

QUICK_START.md – Quick start instructions for those that do not like to read manuals

README.md – several useful information

RELEASE_NOTES.md – release notes for this version

UPGRADING.md – instructions on how to upgrade your programs to the current Logtalk version

VERSION.txt – file containing the current Logtalk version number (used for compatibility checking when
upgrading Logtalk)

loader-sample.lgt – sample loader file for user applications

settings-sample.lgt – sample file for user-defined Logtalk settings

tester-sample.lgt – sample file for helping to automate running user application unit tests

adapters
NOTES.md – notes on the provided adapter files template.pl – template adapter file ... – specific
adapter files

148 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

coding
NOTES.md – notes on syntax highlighter and text editor support files providing syntax coloring for
publishing and editing Logtalk source code ... – syntax coloring support files

contributions
NOTES.md – notes on the user-contributed code ... – user-contributed code files

core
NOTES.md – notes on the current status of the compiler and runtime ... – core source files

docs
NOTES.md – notes on the provided documentation for core, library, tools, and contributions entities
index.html – root document for all entities documentation ... – other entity documentation files

examples
NOTES.md – short description of the provided examples

bricks
NOTES.md – example description and other notes SCRIPT.txt – step by step example tutorial
loader.lgt – loader utility file for the example objects ... – bricks example source files

... – other examples

integration
NOTES.md – notes on scripts for Logtalk integration with Prolog compilers ... – Prolog integration
scripts

library
NOTES.md – short description of the library contents all_loader.lgt – loader utility file for all library
entities ... – library source files

man
... – POSIX man pages for the shell scripts

manuals
NOTES.md – notes on the provided documentation bibliography.html – bibliography glossary.html –
glossary index.html – root document for all documentation ... – other documentation files

paths
NOTES.md – description on how to setup library and examples paths paths.pl – default library and
example paths

ports
NOTES.md – description of included ports of third-party software ... – ports

scratch
NOTES.md – notes on the scratch directory

scripts
NOTES.md – notes on scripts for Logtalk user setup, packaging, and installation ... – packaging, instal-
lation, and setup scripts

tests
NOTES.md – notes on the current status of the unit tests ... – unit tests for built-in features

tools
NOTES.md – notes on the provided programming tools ... – programming tools

1.20. Installing Logtalk 149

The Logtalk Handbook, Release v3.61.0

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compiler. Each
adapter file contains two sets of predicates: ISO Prolog standard predicates and directives not built-in in the
target Prolog compiler and Logtalk specific predicates.

Logtalk already includes ready to use adapter files for most academic and commercial Prolog compilers. If
an adapter file is not available for the compiler that you intend to use, then you need to build a new one,
starting from the included template.pl file. Start by making a copy of the template file. Carefully check (or
complete if needed) each listed definition. If your Prolog compiler conforms to the ISO standard, this task
should only take you a few minutes. In most cases, you can borrow code from the predefined adapter files.
If you are unsure that your Prolog compiler provides all the ISO predicates needed by Logtalk, try to run the
system by setting the unknown predicate error handler to report as an error any call to a missing predicate.
Better yet, switch to a modern, ISO compliant, Prolog compiler. If you send me your adapter file, with a
reference to the target Prolog compiler, maybe I can include it in the next release of Logtalk.

The adapter files specify default values for most of the Logtalk compiler flags. They also specify values for
read-only flags that are used to describe Prolog backend specific features.

Compiler and runtime

The core sub-directory contains the Prolog and Logtalk source files that implement the Logtalk compiler and
the Logtalk runtime. The compiler and the runtime may be split in two (or more) separate files or combined
in a single file, depending on the Logtalk release that you are installing.

Library

The Logtalk distribution includes a standard library of useful objects, categories, and protocols. Read the
corresponding NOTES.md file for details about the library contents.

Examples

The Logtalk distribution includes a large number of programing examples. The sources of each one of these
examples can be found included in a subdirectory with the same name, inside the directory examples. The
majority of these examples include tests and a file named SCRIPT.txt with sample calls. Some examples
may depend on other examples and library objects to work properly. Read the corresponding NOTES.md file
for details before running an example.

Logtalk source files

Logtalk source files are text files containing one or more entity definitions (objects, categories, or protocols).
The Logtalk source files may also contain plain Prolog code. The extension .lgt is normally used. Logtalk
compiles these files to plain Prolog by appending to the file name a suffix derived from the extension and by
replacing the .lgt extension with .pl (.pl is the default Prolog extension; if your Prolog compiler expects
the Prolog source filenames to end with a specific, different extension, you can set it in the corresponding
adapter file).

150 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.21 Prolog integration and migration

An application may include plain Prolog files, Prolog modules, and Logtalk objects. This is a perfectly valid
way of developing a complex application and, in some cases, it might be the most appropriated solution.
Modules may be used for legacy code or when a simple encapsulation mechanism is adequate. Logtalk
objects may be used when more powerful encapsulation, abstraction, and reuse features are required.

This section provides tips for integrating and migrating plain Prolog code and Prolog module code to Logtalk.
Step-by-step instructions are provided for encapsulating plain Prolog code in objects, converting Prolog mod-
ules into objects, and compiling and reusing Prolog modules as objects from inside Logtalk. An interesting
application of the techniques described in this section is a solution for running a Prolog application which
uses modules on a Prolog compiler with no module system. The wrapper tool can be used to help in migrating
Prolog code.

1.21.1 Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler
simply copies the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed
that the module code starts with a module/1-2 directive and ends at the end of the file. There is no module
ending directive which would allowed us to define more than one module per file. In fact, most if not all
Prolog module systems always define a single module per file. Some of them mandate that the module/1-2
directive be the first term on a source file. As such, when the Logtalk compiler finds a module/1-2 directive,
it assumes that all code that follows until the end of the file belongs to the module.

1.21.2 Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining a few top-level predicates
and auxiliary predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code
in objects allows us to make clear the different roles of each predicate, to hide implementation details, to
prevent auxiliary predicates from being called outside the object, and to take advantage of Logtalk advanced
code encapsulating and reusing features.

Encapsulating Prolog code using Logtalk objects is simple. First, for each source file, add an opening object
directive, object/1-5, to the beginning of the file and an ending object directive, end_object/0, to end of the
file. Choose an object name that reflects the purpose of source file code (this is a good opportunity for
code refactoring if necessary). Second, add public/1 predicate directives for the top-level predicates that are
used directly by the user or called from other source files. Third, we need to be able to call from inside
an object predicates defined in other source files/objects. The easiest solution, which has the advantage of
not requiring any changes to the predicate definitions, is to use the uses/2 directive. If your Prolog compiler
supports cross-referencing tools, you may use them to help you make sure that all calls to predicates on other
source files/objects are listed in the uses/2 directives. The Logtalk wrapper tool can also help in detecting
cross predicate calls. Compiling the resulting objects with the Logtalk unknown_predicates and portability
flags set to warning will help you identify calls to predicates defined on other converted source files and
possible portability issues.

1.21. Prolog integration and migration 151

The Logtalk Handbook, Release v3.61.0

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source
files. When encapsulating plain Prolog code that uses multifile predicates, is often the case that the clauses
of the multifile predicates get spread between different objects and categories but conversion is straight-
forward. In the Logtalk object (or category) holding the multifile predicate primary declaration, add a
predicate scope directive and a multifile/1 directive. In all other objects (or categories) defining clauses for
the multifile predicate, add a multifile/1 directive and predicate clauses using the format:

:- multifile(Entity::Name/Arity).

Entity::Functor(...) :-
...

See the User Manual section on the multifile/1 predicate directive for more information. An alternative
solution is to simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary,
a parametric object to encapsulate all predicates working with the multifile predicate clauses. For example,
assume the following multifile/1 directive:

% city(Name, District, Population, Neighbors)
:- multifile(city/4).

We can define a parametric object with city/4 as its identifier:

:- object(city(_Name, _District, _Population, _Neighbors)).

% predicates for working with city/4 clauses

:- end_object.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the
section on Parametric objects for more details.

1.21.3 Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run on a wider range of Prolog compilers,
overcoming compatibility problems. Some Prolog compilers don’t support a module system. Among those
Prolog compilers which support a module system, the lack of standardization leads to several issues, specially
with semantics, operators, and meta-predicates. In addition, the conversion allows you to take advantage
of Logtalk more powerful abstraction and reuse mechanisms such as separation between interface from
implementation, inheritance, parametric objects, and categories. It also allows you to take full advantage of
Logtalk developer tools for improved productivity.

Converting a Prolog module into an object is simplified when the directives used in the module are supported
by Logtalk (see the listing in the next section). Assuming that this is the case, apply the following steps:

1. Convert the module module/1 directive into an object/1 opening object directive, using the module
name as the object name. For module/2 directives apply the same conversion and convert the list of
exported predicates into public/1 predicate directives. Add a closing object directive, end_object/0, at
the end of the source code.

2. Convert any export/1 directives into public/1 predicate directives.

3. Convert any use_module/1 directives for modules that will not be converted to objects into use_module/
2 directives (see next section), replacing the file spec in the first argument with the module name.

152 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

4. Convert any use_module/1-2 directives referencing other modules also being converted to objects into
Logtalk uses/2 directives.

5. Convert each reexport/1 directive into a uses/2 directive and public/1 predicate directives (see next
section).

6. Convert any meta_predicate/1 directives into Logtalk meta_predicate/1 directives by replacing the
module meta-argument indicator, :, with the Logtalk meta-argument indicator, 0. Closures must be
represented using an integer denoting the number of additional arguments that will be appended to
construct a goal. Arguments which are not meta-arguments are represented by the * character.

7. Convert any explicit qualified calls to module predicates to messages by replacing the (:)/2 operator
with the (::)/2 message sending operator when the referenced modules are also being converted into
objects. Calls in the pseudo-module user can be encapsulated using the {}/1 Logtalk external call
control construct. You can also use instead a uses/2 directive where the first argument would be the
atom user and the second argument a list of all external predicates. This alternative has the advantage
of not requiring changes to the code making the predicate calls.

8. If your module uses the database built-in predicates to implement module local mutable state using
dynamic predicates, add both private/1 and dynamic/1 directives for each dynamic predicate.

9. If your module declares or defines clauses for multifile module predicates, replace the (:)/2 functor
by (::)/2 in the multifile/1 directives and in the clause heads for all modules defining the multifile
predicates that are also being converted into objects; if that is not the case, just keep the multifile/1
directives and the clause heads as-is).

10. Compile the resulting objects with the Logtalk unknown_predicates, and portability flags set to warning
to help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates
defined on other converted modules. In order to improve code portability, check the Logtalk library for
possible alternatives to the use of proprietary Prolog built-in predicates.

Before converting your modules to objects, you may try to compile them first as objects (using the
logtalk_compile/1 Logtalk built-in predicates) to help identify any issues that must be dealt with when doing
the conversion to objects. Note that Logtalk supports compiling Prolog files as Logtalk source code without
requiring changes to the file name extensions.

1.21.4 Compiling Prolog modules as objects

A possible alternative to port Prolog code to Logtalk is to compile the Prolog source files using the
logtalk_load/1-2 and logtalk_compile/1-2 predicates. The Logtalk compiler provides partial support for
compiling Prolog modules as Logtalk objects. This support may allow using modules from a backend Prolog
system in a different backend Prolog system although its main purpose is to help in porting existing Pro-
log code to Logtalk in order to benefit from its extended language features and its developer tools. Why
partial support? Although there is a ISO Prolog standard for modules, it is (rightfully) ignored by most
implementers and vendors (due to its flaws and deviation from common practice). In addition, there is no
de facto standard for module systems, despite otherwise frequent misleading claims. Key system differences
include the set of implemented module directives, the directive semantics, the handling of operators, the
locality of flags, and on the integration of term-expansion mechanisms (when provided). Another potential
issue is that, when compiling modules as objects, Logtalk assumes that any referenced module (e.g. using
use_module/1-2 directives) is also being compiled as an object. If that’s not the case, the compiled module
calls being compiled as message sending goals will still work for normal predicates but will not work for
meta-predicates called using implicit module qualification. The reason is that, unlike in Logtalk, calls to
implicitly and explicitly qualified module meta-predicates have different semantics. Follows a discussion of
other limitations of this approach that you should be aware.

1.21. Prolog integration and migration 153

The Logtalk Handbook, Release v3.61.0

Supported module directives

Currently, Logtalk supports the following module directives:

module/1
The module name becomes the object name.

module/2
The module name becomes the object name. The exported predicates become public object predicates.
The exported grammar rule non-terminals become public grammar rule non-terminals. The exported
operators become public object operators but are not active elsewhere when loading the code.

use_module/2
This directive is compiled as a Logtalk uses/2 directive in order to ensure correct compilation of the
module predicate clauses. The first argument of this directive must be the module name (an atom),
not a module file specification (the adapter files attempt to use the Prolog dialect level term-expansion
mechanism to find the module name from the module file specification). Note that the module is not
automatically loaded by Logtalk (as it would be when compiling the directive using Prolog instead
of Logtalk; the programmer may also want the specified module to be compiled as an object). The
second argument must be a predicate indicator (Name/Arity), a grammar rule non-terminal indicator
(Name//Arity), a operator declaration, or a list of predicate indicators, grammar rule non-terminal
indicators, and operator declarations. Predicate aliases can be declared using the notation Name/Arity
as Alias/Arity or, in alternative, the notation Name/Arity:Alias/Arity. Similar for non-terminal
aliases.

export/1
Exported predicates are compiled as public object predicates. The argument must be a predicate indi-
cator (Name/Arity), a grammar rule non-terminal indicator (Name//Arity), an operator declaration, or
a list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2
Reexported predicates are compiled as public object predicates. The first argument is the module
name. The second argument must be a predicate indicator (Name/Arity), a grammar rule non-terminal
indicator (Name//Arity), an operator declaration, or a list of predicate indicators, grammar rule non-
terminal indicators, and operator declarations. Predicate aliases can be declared using the notation
Name/Arity as Alias/Arity or, in alternative, the notation Name/Arity:Alias/Arity. Similar for non-
terminal aliases.

meta_predicate/1
Module meta-predicates become object meta-predicates. Only predicate arguments marked as goals
or closures (using an integer) are interpreted as meta-arguments. In addition, Prolog module meta-
predicates and Logtalk meta-predicates don’t share the same explicit-qualification calling seman-
tics: in Logtalk, meta-arguments are always called in the context of the sender. Logtalk expects
meta-predicate/1 directives for all meta-predicates as it is not based on the predicate-prefixing mech-
anism common to most Prolog module systems.

A common issue when compiling modules as objects is the use of the atoms dynamic, discontiguous, and
multifile as operators in directives. For better portability avoid this usage. For example, write:

:- dynamic([foo/1, bar/2]).

instead of:

:- dynamic foo/1, bar/2.

Another common issue is missing meta_predicate/1, dynamic/1, discontiguous/1, and multifile/1 predi-
cate directives. The Logtalk compiler supports detection of missing directives (by setting its missing_directives
flag to warning).

154 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

When compiling modules as objects, you probably don’t need event support turned on. You may use the
events compiler flag to deny with the Logtalk compiling and loading built-in methods for a small performance
gain for the compiled code.

Unsupported module directives

The reexport/1 and use_module/1 directives are not directly supported by the Logtalk compiler. But most
Prolog adapter files provide support for compiling these directives using Logtalk first stage of its term-
expansion mechanism. Nevertheless, these directives can be converted, respectively, into a sequence of :-
use_module/2 and export/1 directives and use_module/2 directives by finding which predicates exported by
the specified modules are reexported or imported into the module containing the directive. For use_module/1
directives, finding the names of the imported predicates that are actually used is easy. First, comment out the
and compile the file (making sure that the unknown_predicates compiler flag is set to warning). Logtalk will
print a warning with a list of predicates that are called but never defined. Second, use these list to replace
the use_module/1 directives by use_module/2 directives. You should then be able to compile the modified
Prolog module as an object.

Modules using a term-expansion mechanism

Although Logtalk supports term and goal expansion mechanisms, the usage semantics are different from sim-
ilar mechanisms found in some Prolog compilers. In particular, Logtalk does not support defining term and
goal expansions clauses in a source file for expanding the source file itself. Logtalk forces a clean separation
between expansions clauses and the source files that will be subject to source-to-source expansions by using
hook objects. But hook objects also provide a working solution here when the expansion code is separated
from the code to be expanded. Logtalk supports using a module as a hook object as long as its name doesn’t
coincide with the name of an object and that the module uses term_expansion/2 and goal_expansion/2
predicates. Assuming that’s the case, before attempting to compile the modules as objects, the default hook
object is set to the module containing the expansion code. For example, if the expansions stored in a system
module:

| ?- set_logtalk_flag(hook, system).
...

This, however, may not be enough as some expansions may stored in more than one module. A common
example is to use a module named prolog. It is also common to store the expansions in user. The Logtalk
library provides a solution for these scenarios. Using the hook_flows library we can select multiple hook
objects or hook modules. For example, assuming expansions stored on both user and system modules:

| ?- logtalk_load(hook_flows(loader)).
...

| ?- set_logtalk_flag(hook, hook_set([user, system])).
...

After these queries, we can try to compile the modules and look for other porting or portability issues. A
well know issue is Prolog module term-expansions calling predicates such as prolog_load_context/2, which
will always fail when it’s the Logtalk compiler instead of the Prolog compiler loading a source file. In some
of these cases, it may be possible to rewrite the expansion rules to use the logtalk_load_context/2 predicate
instead.

1.21. Prolog integration and migration 155

The Logtalk Handbook, Release v3.61.0

File search paths

Some Prolog systems provide a mechanism for defining file search paths (this mechanism works differently
from Logtalk own suporty for defining library paths). When porting Prolog code that defines file search paths,
e.g. for finding module libraries, it often helps to load the pristine Prolog application before attempting to
compile its source files as Logtalk source files. Depending on the Prolog backend, this may allow the file
search paths to be used when compiling modules as objects that use file directives such as use_module/2.

1.21.5 Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and predicates that may be used in both
plain code and module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk
is usually able to identify and compile them correctly (but see the notes on built-in meta-predicates for
possible caveats). However, Logtalk will generate compilation errors on source files containing propri-
etary directives unless you first specify how the directives should be handled. Several actions are possi-
ble on a per-directive basis: ignoring the directive (i.e. do not copy the directive, although a goal can
be proved as a consequence), rewriting and copy the directive to the generated Prolog files, or rewriting
and recompiling the resulting directive. To specify these actions, the adapter files contain clauses for the
'$lgt_prolog_term_expansion'/2 predicate. For example, assume that a given Prolog compiler defines a
comment/2 directive for predicates using the format:

:- comment(foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
'$lgt_prolog_term_expansion'/2 predicate:

'$lgt_prolog_term_expansion'(
comment(F/A, String),
info(F/A, [comment is Atom])

) :-
atom_codes(Atom, String).

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing
the sources. When used, is advisable to set the portability compiler flag to warning in order to more easily
identify source files that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side effect:

'$lgt_prolog_term_expansion'(
load_foreign_files(Files,Libs,InitRoutine),
[]

) :-
load_foreign_files(Files,Libs,InitRoutine).

In this case, although the directive is not copied to the generated Prolog file, the foreign library files are
loaded as a side effect of the Logtalk compiler calling the '$lgt_prolog_term_expansion'/2 hook predicate.

156 Chapter 1. User Manual

The Logtalk Handbook, Release v3.61.0

1.21.6 Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module
qualification, i.e. by writing Module:Goal or Goal@Module (depending on the module system). Logtalk
also supports the use of use_module/2 directives in object and categories (with the restriction that the first
argument of the directive must be the actual module name and not the module file name or the module file
path). In this case, these directives are parsed in a similar way to Logtalk uses/2 directives, with calls to the
specified module predicates being automatically translated to Module:Goal calls.

As a general rule, the Prolog modules should be loaded (e.g. in the auxiliary Logtalk loader files) before
compiling objects that make use of module predicates. Moreover, the Logtalk compiler does not generate
code for the automatic loading of modules referenced in use_module/1-2 directives. This is a consequence
of the lack of standardization of these directives, whose first argument can be a module name, a straight file
name, or a file name using some kind of library notation, depending on the backend Prolog compiler. Worse,
modules are sometimes defined in files with names different from the module names requiring finding,
opening, and reading the file in order to find the actual module name.

Logtalk supports the declaration of predicate aliases and predicate shorthands in use_module/2 directives
used within object and categories. For example, the ECLiPSe IC Constraint Solvers define a (::)/2 variable
domain operator that clashes with the Logtalk (::)/2 message sending operator. We can solve the conflict
by writing:

:- use_module(ic, [(::)/2 as ins/2]).

With this directive, calls to the ins/2 predicate alias will be automatically compiled by Logtalk to calls to the
(::)/2 predicate in the ic module.

Logtalk allows you to send a message to a module in order to call one of its predicates. This is usually
not advised as it implies a performance penalty when compared to just using the Module:Call notation.
Moreover, this works only if there is no object with the same name as the module you are targeting. This
feature is necessary, however, in order to properly support compilation of modules containing use_module/2
directives as objects. If the modules specified in the use_module/2 directives are not compiled as objects but
are instead loaded as-is by Prolog, the exported predicates would need to be called using the Module:Call
notation but the converted module will be calling them through message sending. Thus, this feature ensures
that, on a module compiled as an object, any predicate calling other module predicates will work as expected
either these other modules are loaded as-is or also compiled as objects.

For more details, see the Calling Prolog predicates section.

1.21.7 Loading converted Prolog applications

Logtalk strongly favors and advises users to provide a main loader file for applications that explicitly load any
required libraries and the application source files. In contrast, Prolog applications often either scatter loading
of source files from multiple files or use implicit loading of source files via use_module/1-2 directives. Due
to this frequent ad-hoc approach, it’s common to find Prolog applications with duplicated loading directives
and are loading order ignores the dependencies between source files. These issues are easily exposed by the
Logtalk linter when compiling Prolog files as Logtalk files. Also common are Prolog files with multiple circular
dependencies. While this should not affect the semantics of the ported code, it may cause some performance
penalties as it prevents the Logtalk compiler of optimizing the message sending goals using static-binding.
It also makes the application architecture more difficult to understand. The definition of explicit loader files
provides a good opportunity of sorting out loading order and circular dependencies, with the linter warnings
providing hints for possible code refactoring to eliminate these issues. The diagrams tool supports directory
and file loading and dependency diagrams that are also useful in understanding applications architecture.

1.21. Prolog integration and migration 157

The Logtalk Handbook, Release v3.61.0

158 Chapter 1. User Manual

CHAPTER

TWO

REFERENCE MANUAL

2.1 Grammar

The Logtalk grammar is here described using Backus-Naur Form syntax. Non-terminal symbols in italics have
the definition found in the ISO Prolog Core standard. Terminal symbols are represented in a fixed width
font and between double-quotes.

2.1.1 Entities

entity ::=
object |
category |
protocol

2.1.2 Object definition

object ::=
begin_object_directive [object_terms] end_object_directive.

begin_object_directive ::=
“:- object(” object_identifier [“,” object_relations] “).”

end_object_directive ::=
“:- end_object.”

object_relations ::=
prototype_relations |
non_prototype_relations

prototype_relations ::=
prototype_relation |
prototype_relation “,” prototype_relations

159

The Logtalk Handbook, Release v3.61.0

prototype_relation ::=
implements_protocols |
imports_categories |
extends_objects

non_prototype_relations ::=
non_prototype_relation |
non_prototype_relation “,” non_prototype_relations

non_prototype_relation ::=
implements_protocols |
imports_categories |
instantiates_classes |
specializes_classes

2.1.3 Category definition

category ::=
begin_category_directive [category_terms] end_category_directive.

begin_category_directive ::=
“:- category(” category_identifier [“,” category_relations] “).”

end_category_directive ::=
“:- end_category.”

category_relations ::=
category_relation |
category_relation “,” category_relations

category_relation ::=
implements_protocols |
extends_categories |
complements_objects

160 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.1.4 Protocol definition

protocol ::=
begin_protocol_directive [protocol_directives] end_protocol_directive.

begin_protocol_directive ::=
“:- protocol(” protocol_identifier [“,” extends_protocols] “).”

end_protocol_directive ::=
“:- end_protocol.”

2.1.5 Entity relations

extends_protocols ::=
“extends(” extended_protocols “)”

extends_objects ::=
“extends(” extended_objects “)”

extends_categories ::=
“extends(” extended_categories “)”

implements_protocols ::=
“implements(” implemented_protocols “)”

imports_categories ::=
“imports(” imported_categories “)”

instantiates_classes ::=
“instantiates(” instantiated_objects “)”

specializes_classes ::=
“specializes(” specialized_objects “)”

complements_objects ::=
“complements(” complemented_objects “)”

2.1. Grammar 161

The Logtalk Handbook, Release v3.61.0

Implemented protocols

implemented_protocols ::=
implemented_protocol |
implemented_protocol_sequence |
implemented_protocol_list

implemented_protocol ::=
protocol_identifier |
scope “::” protocol_identifier

implemented_protocol_sequence ::=
implemented_protocol |
implemented_protocol “,” implemented_protocol_sequence

implemented_protocol_list ::=
“[” implemented_protocol_sequence “]”

Extended protocols

extended_protocols ::=
extended_protocol |
extended_protocol_sequence |
extended_protocol_list

extended_protocol ::=
protocol_identifier |
scope “::” protocol_identifier

extended_protocol_sequence ::=
extended_protocol |
extended_protocol “,” extended_protocol_sequence

extended_protocol_list ::=
“[” extended_protocol_sequence “]”

162 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Imported categories

imported_categories ::=
imported_category |
imported_category_sequence |
imported_category_list

imported_category ::=
category_identifier |
scope “::” category_identifier

imported_category_sequence ::=
imported_category |
imported_category “,” imported_category_sequence

imported_category_list ::=
“[” imported_category_sequence “]”

Extended objects

extended_objects ::=
extended_object |
extended_object_sequence |
extended_object_list

extended_object ::=
object_identifier |
scope “::” object_identifier

extended_object_sequence ::=
extended_object |
extended_object “,” extended_object_sequence

extended_object_list ::=
“[” extended_object_sequence “]”

2.1. Grammar 163

The Logtalk Handbook, Release v3.61.0

Extended categories

extended_categories ::=
extended_category |
extended_category_sequence |
extended_category_list

extended_category ::=
category_identifier |
scope “::” category_identifier

extended_category_sequence ::=
extended_category |
extended_category “,” extended_category_sequence

extended_category_list ::=
“[” extended_category_sequence “]”

Instantiated objects

instantiated_objects ::=
instantiated_object |
instantiated_object_sequence |
instantiated_object_list

instantiated_object ::=
object_identifier |
scope “::” object_identifier

instantiated_object_sequence ::=
instantiated_object
instantiated_object “,” instantiated_object_sequence |

instantiated_object_list ::=
“[” instantiated_object_sequence “]”

164 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Specialized objects

specialized_objects ::=
specialized_object |
specialized_object_sequence |
specialized_object_list

specialized_object ::=
object_identifier |
scope “::” object_identifier

specialized_object_sequence ::=
specialized_object |
specialized_object “,” specialized_object_sequence

specialized_object_list ::=
“[” specialized_object_sequence “]”

Complemented objects

complemented_objects ::=
object_identifier |
complemented_object_sequence |
complemented_object_list

complemented_object_sequence ::=
object_identifier |
object_identifier “,” complemented_object_sequence

complemented_object_list ::=
“[” complemented_object_sequence “]”

Entity and predicate scope

scope ::=
“public” |
“protected” |
“private”

2.1. Grammar 165

The Logtalk Handbook, Release v3.61.0

2.1.6 Entity identifiers

entity_identifiers ::=
entity_identifier |
entity_identifier_sequence |
entity_identifier_list

entity_identifier ::=
object_identifier |
protocol_identifier |
category_identifier

entity_identifier_sequence ::=
entity_identifier |
entity_identifier “,” entity_identifier_sequence

entity_identifier_list ::=
“[” entity_identifier_sequence “]”

Object identifiers

object_identifiers ::=
object_identifier |
object_identifier_sequence |
object_identifier_list

object_identifier ::=
atom |
compound

object_identifier_sequence ::=
object_identifier |
object_identifier “,” object_identifier_sequence

object_identifier_list ::=
“[” object_identifier_sequence “]”

166 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Category identifiers

category_identifiers ::=
category_identifier |
category_identifier_sequence |
category_identifier_list

category_identifier ::=
atom |
compound

category_identifier_sequence ::=
category_identifier |
category_identifier “,” category_identifier_sequence

category_identifier_list ::=
“[” category_identifier_sequence “]”

Protocol identifiers

protocol_identifiers ::=
protocol_identifier |
protocol_identifier_sequence |
protocol_identifier_list

protocol_identifier ::=
atom

protocol_identifier_sequence ::=
protocol_identifier |
protocol_identifier “,” protocol_identifier_sequence

protocol_identifier_list ::=
“[” protocol_identifier_sequence “]”

2.1. Grammar 167

The Logtalk Handbook, Release v3.61.0

Module identifiers

module_identifier ::=
atom

2.1.7 Source file names

source_file_names ::=
source_file_name |
source_file_name_list

source_file_name ::=
atom |
library_source_file_name

library_source_file_name ::=
library_name “(” atom “)”

library_name ::=
atom

source_file_name_sequence ::=
source_file_name |
source_file_name “,” source_file_name_sequence

source_file_name_list ::=
“[” source_file_name_sequence “]”

2.1.8 Terms

Object terms

object_terms ::=
object_term |
object_term object_terms

object_term ::=
object_directive |
clause |
grammar_rule

168 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Category terms

category_terms ::=
category_term |
category_term category_terms

category_term ::=
category_directive |
clause |
grammar_rule

2.1.9 Directives

Source file directives

source_file_directives ::=
source_file_directive |
source_file_directive source_file_directives

source_file_directive ::=
“:- encoding(” atom “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).”
Prolog directives

Conditional compilation directives

conditional_compilation_directives ::=
conditional_compilation_directive |
conditional_compilation_directive conditional_compilation_directives

conditional_compilation_directive ::=
“:- if(” callable “).” |
“:- elif(” callable “).” |
“:- else.” |
“:- endif.”

2.1. Grammar 169

The Logtalk Handbook, Release v3.61.0

Object directives

object_directives ::=
object_directive |
object_directive object_directives

object_directive ::=
“:- initialization(” callable “).” |
“:- built_in.” |
“:- threaded.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
“:- uses(” object_alias_list “).” |
predicate_directives

Category directives

category_directives ::=
category_directive |
category_directive category_directives

category_directive ::=
“:- built_in.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
“:- uses(” object_alias_list “).” |
predicate_directives

Protocol directives

protocol_directives ::=
protocol_directive |
protocol_directive protocol_directives

protocol_directive ::=
“:- built_in.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
predicate_directives

170 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Predicate directives

predicate_directives ::=
predicate_directive |
predicate_directive predicate_directives

predicate_directive ::=
alias_directive |
synchronized_directive |
uses_directive |
use_module_directive |
scope_directive |
mode_directive |
meta_predicate_directive |
meta_non_terminal_directive |
info_directive |
dynamic_directive |
discontiguous_directive |
multifile_directive |
coinductive_directive |
operator_directive

alias_directive ::=
“:- alias(”

entity_identifier “,”
predicate_indicator_alias_list | non_terminal_indicator_alias_list

“).”

synchronized_directive ::=
“:- synchronized(” predicate_indicator_term | non_terminal_indicator_term “).”

uses_directive ::=
“:- uses(”

object_identifier | parameter_variable “,”
predicate_indicator_alias_list | non_terminal_indicator_alias_list | operator_list

“).”

use_module_directive ::=
“:- use_module(”

module_identifier | parameter_variable “,”
module_predicate_indicator_alias_list | module_non_terminal_indicator_alias_list |
operator_list

“).”

2.1. Grammar 171

The Logtalk Handbook, Release v3.61.0

scope_directive ::=
“:- public(” predicate_indicator_term | non_terminal_indicator_term “).” |
“:- protected(” predicate_indicator_term | non_terminal_indicator_term “).” |
“:- private(” predicate_indicator_term | non_terminal_indicator_term “).”

mode_directive ::=
“:- mode(”

predicate_mode_term | non_terminal_mode_term “,”
number_of_proofs

“).”

meta_predicate_directive ::=
“:- meta_predicate(” meta_predicate_template_term “).”

meta_non_terminal_directive ::=
“:- meta_non_terminal(” meta_non_terminal_template_term “).”

info_directive ::=
“:- info(”

predicate_indicator | non_terminal_indicator “,”
predicate_info_list

“).”

dynamic_directive ::=
“:- dynamic(” qualified_predicate_indicator_term | qualified_non_terminal_indicator_term “).”

discontiguous_directive ::=
“:- discontiguous(” predicate_indicator_term |
non_terminal_indicator_term “).”

multifile_directive ::=
“:- multifile(” qualified_predicate_indicator_term |
qualified_non_terminal_indicator_term “).”

coinductive_directive ::=
“:- coinductive(” predicate_indicator_term |
coinductive_predicate_template_term “).”

parameter_variable ::=
variable

172 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

entity_resources_list ::=
predicate_indicator_list |
operator_list

predicate_indicator_term ::=
predicate_indicator |
predicate_indicator_sequence |
predicate_indicator_list

predicate_indicator_sequence ::=
predicate_indicator |
predicate_indicator “,” predicate_indicator_sequence

predicate_indicator_list ::=
“[” predicate_indicator_sequence “]”

qualified_predicate_indicator_term ::=
qualified_predicate_indicator |
qualified_predicate_indicator_sequence |
qualified_predicate_indicator_list

qualified_predicate_indicator_sequence ::=
qualified_predicate_indicator |
qualified_predicate_indicator “,” qualified_predicate_indicator_sequence

qualified_predicate_indicator_list ::=
“[” qualified_predicate_indicator_sequence “]”

qualified_predicate_indicator ::=
predicate_indicator |
object_identifier “::” predicate_indicator |
category_identifier “::” predicate_indicator |
module_identifier “:” predicate_indicator

predicate_indicator_alias ::=
predicate_indicator |
predicate_indicator “as” predicate_indicator |
predicate_indicator “::” predicate_indicator

predicate_indicator_alias_sequence ::=
predicate_indicator_alias |

2.1. Grammar 173

The Logtalk Handbook, Release v3.61.0

predicate_indicator_alias “,” predicate_indicator_alias_sequence

predicate_indicator_alias_list ::=
“[” predicate_indicator_alias_sequence “]”

predicate_template_alias ::=
callable “as” callable |
callable “::” callable

predicate_template_alias_sequence ::=
predicate_template_alias |
predicate_template_alias “,” predicate_template_alias_sequence

predicate_template_alias_list ::=
“[” predicate_template_alias_sequence “]”

module_predicate_indicator_alias ::=
predicate_indicator |
predicate_indicator “as” predicate_indicator |
predicate_indicator “:” predicate_indicator

module_predicate_indicator_alias_sequence ::=
module_predicate_indicator_alias |
module_predicate_indicator_alias “,” module_predicate_indicator_alias_sequence

module_predicate_indicator_alias_list ::=
“[” module_predicate_indicator_alias_sequence “]”

module_non_terminal_indicator_alias ::=
non_terminal_indicator |
non_terminal_indicator “as” non_terminal_indicator
non_terminal_indicator “:” non_terminal_indicator

module_non_terminal_indicator_alias_sequence ::=
module_non_terminal_indicator_alias |
module_non_terminal_indicator_alias “,” module_non_terminal_indicator_alias_sequence

module_non_terminal_indicator_alias_list ::=
“[” module_non_terminal_indicator_alias_sequence “]”

174 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

non_terminal_indicator_term ::=
non_terminal_indicator |
non_terminal_indicator_sequence |
non_terminal_indicator_list

non_terminal_indicator_sequence ::=
non_terminal_indicator |
non_terminal_indicator “,” non_terminal_indicator_sequence

non_terminal_indicator_list ::=
“[” non_terminal_indicator_sequence “]”

non_terminal_indicator ::=
functor “//” arity

qualified_non_terminal_indicator_term ::=
qualified_non_terminal_indicator |
qualified_non_terminal_indicator_sequence |
qualified_non_terminal_indicator_list

qualified_non_terminal_indicator_sequence ::=
qualified_non_terminal_indicator |
qualified_non_terminal_indicator “, ” qualified_non_terminal_indicator_sequence

qualified_non_terminal_indicator_list ::=
“[” qualified_non_terminal_indicator_sequence “]”

qualified_non_terminal_indicator ::=
non_terminal_indicator |
object_identifier “::” non_terminal_indicator |
category_identifier “::” non_terminal_indicator |
module_identifier “:” non_terminal_indicator

non_terminal_indicator_alias ::=
non_terminal_indicator |
non_terminal_indicator “as” non_terminal_indicator
non_terminal_indicator “::” non_terminal_indicator

non_terminal_indicator_alias_sequence ::=
non_terminal_indicator_alias |
non_terminal_indicator_alias “,”

2.1. Grammar 175

The Logtalk Handbook, Release v3.61.0

non_terminal_indicator_alias_sequence

non_terminal_indicator_alias_list ::=
“[” non_terminal_indicator_alias_sequence “]”

operator_sequence ::=
operator specification |
operator specification “,”
operator_sequence

operator_list ::=
“[” operator_sequence “]”

coinductive_predicate_template_term ::=
coinductive_predicate_template |
coinductive_predicate_template_sequence |
coinductive_predicate_template_list

coinductive_predicate_template_sequence ::=
coinductive_predicate_template |
coinductive_predicate_template “,”
coinductive_predicate_template_sequence

coinductive_predicate_template_list ::=
“[” coinductive_predicate_template_sequence “]”

coinductive_predicate_template ::=
atom “(” coinductive_mode_terms “)”

coinductive_mode_terms ::=
coinductive_mode_term |
coinductive_mode_terms “,” coinductive_mode_terms

coinductive_mode_term ::=
“+” | “-”

predicate_mode_term ::=
atom “(” mode_terms “)”

non_terminal_mode_term ::=

176 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

atom “(” mode_terms “)”

mode_terms ::=
mode_term |
mode_term “,” mode_terms

mode_term ::=
“@” [type] | “+” [type] | “-” [type] | “?” [
type] |
“++” [type] | “--” [type]

type ::=
prolog_type | logtalk_type | user_defined_type

prolog_type ::=
“term” | “nonvar” | “var” |
“compound” | “ground” | “callable” | “list” |
“atomic” | “atom” |
“number” | “integer” | “float”

logtalk_type ::=
“object” | “category” | “protocol” |
“event”

user_defined_type ::=
atom |
compound

number_of_proofs ::=
“zero” | “zero_or_one” | “zero_or_more” | “one” |
“one_or_more” | “zero_or_error” | “one_or_error” |
“zero_or_one_or_error” | “error”

meta_predicate_template_term ::=
meta_predicate_template |
meta_predicate_template_sequence |
meta_predicate_template_list

meta_predicate_template_sequence ::=
meta_predicate_template |
meta_predicate_template “,” meta_predicate_template_sequence

2.1. Grammar 177

The Logtalk Handbook, Release v3.61.0

meta_predicate_template_list ::=
“[” meta_predicate_template_sequence “]”

meta_predicate_template ::=
object_identifier “::” atom “(” meta_predicate_specifiers “)” |
category_identifier “::” atom “(” meta_predicate_specifiers “)” |
atom “(” meta_predicate_specifiers “)”

meta_predicate_specifiers ::=
meta_predicate_specifier |
meta_predicate_specifier “,” meta_predicate_specifiers

meta_predicate_specifier ::=
non-negative integer | “::” | “^” |
“*”

meta_non_terminal_template_term ::=
meta_predicate_template_term

entity_info_list ::=
“[]” |
“[” entity_info_item “is” nonvar “|” entity_info_list
“]”

entity_info_item ::=
“comment” | “remarks” |
“author” | “version” | “date” |
“copyright” | “license” |
“parameters” | “parnames” |
“see_also” |
atom

predicate_info_list ::=
“[]” |
“[” predicate_info_item “is” nonvar “|” predicate_info_list “]”

predicate_info_item ::=
“comment” | “remarks” |
“arguments” | “argnames” |
“redefinition” | “allocation” |
“examples” | “exceptions” |
atom

178 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

object_alias ::=
object_identifier “as” object_identifier

object_alias_sequence ::=
object_alias |
object_alias “,” object_alias_sequence

object_alias_list ::=
“[” object_alias_sequence “]”

2.1.10 Clauses and goals

clause ::=
object_identifier “::” head “:-” body |
module_identifier “:” head “:-” body |
head :- body |
fact

goal ::=
message_sending |
super_call |
external_call |
context_switching_call |
callable

message_sending ::=
message_to_object |
message_delegation |
message_to_self

message_to_object ::=
receiver “::” messages

message_delegation ::=
“[” message_to_object “]”

message_to_self ::=
“::” messages

super_call ::=
“^^” message

2.1. Grammar 179

The Logtalk Handbook, Release v3.61.0

messages ::=
message |
“(” message “,” messages “)” |
“(” message “;” messages “)” |
“(” message “->” messages “)”

message ::=
callable |
variable

receiver ::=
“{” callable “}” |
object_identifier |
variable

external_call ::=
“{” callable “}”

context_switching_call ::=
object_identifier “<<” goal

2.1.11 Lambda expressions

lambda_expression ::=
lambda_free_variables “/” lambda_parameters “>>” callable |
lambda_free_variables “/” callable |
lambda_parameters “>>” callable

lambda_free_variables ::=
“{” conjunction of variables “}” |
“{” variable “}” |
“{}”

lambda_parameters ::=
list of terms |
“[]”

180 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.1.12 Entity properties

category_property ::=
“static” |
“dynamic” |
“built_in” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |
“events” |
“source_data” |
“public(” entity_resources_list “)” |
“protected(” entity_resources_list “)” |
“private(” entity_resources_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |
“defines(” predicate_indicator “,” predicate_definition_property_list “)” |
“includes(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“provides(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“calls(” predicate “,” predicate_call_update_property_list “)” |
“updates(” predicate “,” predicate_call_update_property_list “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)” |
“number_of_user_clauses(” integer “)” |
“number_of_user_rules(” integer “)” |
“debugging”

object_property ::=
“static” |
“dynamic” |
“built_in” |
“threaded” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |
“context_switching_calls” |
“dynamic_declarations” |
“events” |
“source_data” |
“complements(” “allow” | “restrict” “)” |
“complements” |
“public(” entity_resources_list “)” |
“protected(” entity_resources_list “)” |
“private(” entity_resources_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |

2.1. Grammar 181

The Logtalk Handbook, Release v3.61.0

“defines(” predicate_indicator “,” predicate_definition_property_list “)” |
“includes(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“provides(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)”
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“calls(” predicate “,” predicate_call_update_property_list “)” |
“updates(” predicate “,” predicate_call_update_property_list “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)” |
“number_of_user_clauses(” integer “)”
“number_of_user_rules(” integer “)” |
“module |”
“debugging”

protocol_property ::=
“static” |
“dynamic” |
“built_in” |
“source_data” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |
“public(” entity_resources_list “)” |
“protected(” entity_resources_list “)” |
“private(” entity_resources_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“debugging”

predicate_declaration_property_list ::=
“[” predicate_declaration_property_sequence “]”

predicate_declaration_property_sequence ::=
predicate_declaration_property |
predicate_declaration_property “,”
predicate_declaration_property_sequence

predicate_declaration_property ::=
“static” | “dynamic” |
“scope(” scope “)” |
“private” | “protected” | “public” |
“coinductive” |
“multifile” |
“synchronized” |

182 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

“meta_predicate(” meta_predicate_template “)” |
“coinductive(” coinductive_predicate_template “)” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“mode(” predicate_mode_term | non_terminal_mode_term “,” number_of_proofs “)” |
“info(” list “)”

predicate_definition_property_list ::=
“[” predicate_definition_property_sequence “]”

predicate_definition_property_sequence ::=
predicate_definition_property |
predicate_definition_property “,”
predicate_definition_property_sequence

predicate_definition_property ::=
“inline” | “auxiliary” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)”

predicate_alias_property_list ::=
“[” predicate_alias_property_sequence “]”

predicate_alias_property_sequence ::=
predicate_alias_property |
predicate_alias_property “,” predicate_alias_property_sequence

predicate_alias_property ::=
“for(” predicate_indicator “)” |
“from(” entity_identifier “)” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)”

predicate ::=
predicate_indicator |
“^^” predicate_indicator |
“::” predicate_indicator |
variable “::” predicate_indicator |

2.1. Grammar 183

The Logtalk Handbook, Release v3.61.0

object_identifier “::” predicate_indicator |
variable “:” predicate_indicator |
module_identifier “:” predicate_indicator

predicate_call_update_property_list ::=
“[” predicate_call_update_property_sequence “]”

predicate_call_update_property_sequence ::=
predicate_call_update_property |
predicate_call_update_property “,”
predicate_call_update_property_sequence

predicate_call_update_property ::=
“caller(” predicate_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“as(” predicate_indicator “)”

2.1.13 Predicate properties

predicate_property ::=
“static” | “dynamic” |
“scope(” scope “)” |
“private” | “protected” | “public” |
“logtalk” | “prolog” | “foreign” |
“coinductive(” coinductive_predicate_template “)” |
“multifile” |
“synchronized” |
“built_in” |
“inline” |
“declared_in(” entity_identifier “)” |
“defined_in(” object_identifier | category_identifier “)” |
“redefined_from(” object_identifier | category_identifier “)” |
“meta_predicate(” meta_predicate_template “)” |
“alias_of(” callable “)” |
“alias_declared_in(” entity_identifier “)” |
“non_terminal(” non_terminal_indicator “)” |
“mode(” predicate_mode_term | non_terminal_mode_term “,” number_of_proofs “)” |
“info(” list “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)” |
“declared_in(” entity_identifier “,” line_count “)” |
“defined_in(” object_identifier | category_identifier “,” line_count “)” |
“redefined_from(” object_identifier | category_identifier “,” line_count “)” |
“alias_declared_in(” entity_identifier “,” line_count “)”

184 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

line_count ::=
integer”

2.1.14 Compiler flags

compiler_flag ::=
flag(flag_value)

2.2 Control constructs

2.2.1 Message sending

control construct

(::)/2

Description

Object::Message
{Proxy}::Message

Sends a message to an object. The message argument must match a public predicate of the receiver object.
When the message corresponds to a protected or private predicate, the call is only valid if the sender matches
the predicate scope container. When the predicate is declared but not defined, the message simply fails (as
per the closed-world assumption).

The {Proxy}::Message syntax allows simplified access to parametric object proxies. Its operational semantics
is equivalent to the conjunction (call(Proxy), Proxy::Message). I.e. Proxy is proved within the con-
text of the pseudo-object user and, if successful, the Proxy term is used as an object identifier. Exceptions
thrown when proving Proxy are handled by the (::)/2 control construct. This construct construct supports
backtracking over the {Proxy} goal.

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile time whenever
sufficient information is available. When the lookups are performed at runtime, a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section on performance for details.

Modes and number of proofs

+object_identifier::+callable - zero_or_more
{+object_identifier}::+callable - zero_or_more

2.2. Control constructs 185

The Logtalk Handbook, Release v3.61.0

Errors

Either Object or Message is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:
permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Object does not exist:
existence_error(object, Object)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor a callable term:
type_error(callable, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Examples

| ?- list::member(X, [1, 2, 3]).

X = 1 ;
X = 2 ;
X = 3
yes

See also:

(::)/1, (^^)/1, []/1

control construct

(::)/1

Description

::Message

Sends a message to self . Can only used in the body of a predicate definition. The argument should match a
public or protected predicate of self. It may also match a private predicate if the predicate is within the scope
of the object where the method making the call is defined, if imported from a category, if used from within

186 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

a category, or when using private inheritance. When the predicate is declared but not defined, the message
simply fails (as per the closed-world assumption).

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. A message to self necessarily implies the use of dynamic binding but a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section on performance for details.

Modes and number of proofs

::+callable - zero_or_more

Errors

Message is a variable:
instantiation_error

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

area(Area) :-
::width(Width),
::height(Height),
Area is Width * Height.

See also:

(::)/2, (^^)/1, []/1

2.2.2 Message delegation

control construct

[]/1

Description

[Object::Message]
[{Proxy}::Message]

This control construct allows the programmer to send a message to an object while preserving the original
sender. It is mainly used in the definition of object handlers for unknown messages. This functionality is

2.2. Control constructs 187

The Logtalk Handbook, Release v3.61.0

usually known as delegation but be aware that this is an overloaded word that can mean different things in
different object-oriented programming languages.

To prevent using of this control construct to break object encapsulation, an attempt to delegate a message
to the original sender results in an error. The remaining error conditions are the same as the (::)/2 control
construct.

Note that, despite the correct functor for this control construct being (traditionally) '.'/2, we refer to it as
[]/1 simply to emphasize that the syntax is a list with a single element.

Modes and number of proofs

[+object_identifier::+callable] - zero_or_more
[{+object_identifier}::+callable] - zero_or_more

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor an object identifier:
type_error(object_identifier, Object)

Object does not exist:
existence_error(object, Object)

Object and the original sender are the same object:
permission_error(access, object, Sender)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Message is a variable:
instantiation_error

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:
permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

188 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

% delegate unknown messages to the "backup" object:
forward(Message) :-

[backup::Message].

See also:

(::)/2, (::)/1, (^^)/1, forward/1

2.2.3 Calling imported and inherited predicates

control construct

(^^)/1

Description

^^Predicate

Calls an imported or inherited predicate definition. The call fails if the predicate is declared but there is no
imported or inherited predicate definition (as per the closed-world assumption). This control construct may
be used within objects or categories in the body of a predicate definition.

This control construct preserves the implicit execution context self and sender arguments (plus the meta-
call context and coinduction stack when applicable) when calling the inherited (or imported) predicate
definition.

The lookups for the predicate declaration and the predicate definition are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile time when
the predicate is static and sufficient information is available. When the lookups are performed at runtime,
a caching mechanism is used to improve performance in subsequent calls. See the User Manual section on
performance for details.

When the call is made from within an object, the lookup for the predicate definition starts at the imported
categories, if any. If an imported predicate definition is not found, the lookup proceeds to the ancestor
objects. Calls from predicates defined in complementing categories lookup inherited definitions as if the
calls were made from the complemented object, thus allowing more comprehensive object patching. For
other categories, the predicate definition lookup is restricted to the extended categories.

The called predicate should be declared public or protected. It may also be declared private if within the
scope of the entity where the method making the call is defined.

This control construct is a generalization of the Smalltalk super keyword to take into account Logtalk support
for prototypes and categories besides classes.

2.2. Control constructs 189

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

^^+callable - zero_or_more

Errors

Predicate is a variable:
instantiation_error

Predicate is neither a variable nor a callable term:
type_error(callable, Predicate)

Predicate, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Predicate, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

% specialize the inherited definition
% of the init/0 predicate:
init :-

assertz(counter(0)),
^^init.

See also:

(::)/2, (::)/1, []/1

2.2.4 Calling external predicates

control construct

{}/1

Description

{Goal}
{Closure}
{Term}

This control construct allows the programmer to bypass the Logtalk compiler (including its linter but not its
optimizer) in multiple contexts:

• Calling a goal as-is (from within an object or category) in the context of the user pseudo-object.

• Extending a closure as-is with the remaining arguments of a call/2-N call in order to construct a goal
that will be called within the context of the user pseudo-object.

• Wrapping a source file term (either a clause or a directive) or a source file goal to bypass the term-
expansion mechanism.

190 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

• Using it in place of an object identifier when sending a message. In this case, its argument is proved
as a goal within the context of the user pseudo-object with the resulting term being used as an object
identifier in the message sending goal. This feature is mainly used with parametric objects when their
identifiers correspond to predicates defined in user.

• Using it as a message to an object. This is mainly useful when the message is e.g. a conjunction of
messages, some of which being calls to Prolog built-in predicates.

Note: This control construct is opaque to cuts when used to wrap a goal (thus ensuring the same semantics
independently of the argument being bound at compile time or at runtime).

Modes and number of proofs

{+callable} - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

Term is a variable:
instantiation_error

Term is neither a variable nor a callable term:
type_error(callable, Term)

Examples

% overload the standard (<)/2 operator by
% calling its standard built-in definition:
N1/D1 < N2/D2 :-

{N1*D2 < N2*D1}.

% call a closure in the context of "user":
call_in_user(F, X, Y, Z) :-

call({F}, X, Y, Z).

% bypass the compiler for a proprietary backend directive:
{:- load_foreign_resource(file)}.

(continues on next page)

2.2. Control constructs 191

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

% use parametric object proxies:
| ?- {circle(Id, Radius, Color)}::area(Area).
...

% use Prolog built-in predicates as messages:
| ?- logtalk::{write('hello world!'), nl}.
hello world!
yes

2.2.5 Context switching calls

control construct

(<<)/2

Description

Object<<Goal
{Proxy}<<Goal

Debugging control construct. Calls a goal within the context of the specified object. The goal is called with
the execution context (sender, this, and self) set to the object. The goal may need to be written between
parenthesis to avoid parsing errors due to operator conflicts. This control construct should only be used
for debugging or for writing unit tests. This control construct can only be used for objects compiled with
the context_switching_calls compiler flag set to allow. Set this compiler flag to deny to disable this control
construct and thus preventing using it to break encapsulation.

The {Proxy}<<Goal syntax allows simplified access to parametric object proxies. Its operational semantics is
equivalent to the goal conjunction (call(Proxy), Proxy<<Goal). I.e. Proxy is proved within the context of
the pseudo-object user and, if successful, the goal term is used as a parametric object identifier. Exceptions
thrown when proving Proxy are handled by the (<<)/2 control construct. This syntax construct supports
backtracking over the {Proxy} goal.

Caveat: although the goal argument is fully compiled before calling, some necessary information for the
second compiler pass may not be available at runtime.

Modes and number of proofs

+object_identifier<<+callable - zero_or_more
{+object_identifier}<<+callable - zero_or_more

192 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Object does not contain a local definition for the Goal predicate:
existence_error(procedure, Goal)

Object does not exist:
existence_error(object, Object)

Object was created/compiled with support for context switching calls turned off:
permission_error(access, database, Goal)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

The predicate Proxy does not exist in the user pseudo-object:
existence_error(procedure, ProxyFunctor/ProxyArity)

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

% call the member/2 predicate in the
% context of the "list" object:
test(member) :-

list << member(1, [1]).

2.3 Directives

2.3.1 Source file directives

directive

2.3. Directives 193

The Logtalk Handbook, Release v3.61.0

encoding/1

Description

encoding(Encoding)

Declares the source file text encoding. Requires a backend Prolog compiler supporting the chosen encoding.
When used, this directive must be the first term in the source file in the first line. This directive is also
supported in files included in a main file or in a dynamically created entity using include/1 directives.

The encoding used in a source file (and, in the case of a Unicode encoding, any BOM present) will be used
for the intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by
IANA. In those cases where a preferred MIME name alias is specified, the alias is used instead. Examples in-
cludes 'US-ASCII', 'ISO-8859-1', 'ISO-8859-2', 'ISO-8859-15', 'UCS-2', 'UCS-2LE', 'UCS-2BE', 'UTF-8',
'UTF-16', 'UTF-16LE', 'UTF-16BE', 'UTF-32', 'UTF-32LE', 'UTF-32BE', 'Shift_JIS', and 'EUC-JP'. When
writing portable code that cannot be expressed using ASCII, 'UTF-8' is the most commonly supported Uni-
code encoding.

The backend Prolog compiler adapter files define a table that translates between the Logtalk and Prolog
specific atoms that represent each supported encoding. The encoding_directive read-only flag can be used to
find if a backend supports this directive and how.

Template and modes

encoding(+atom)

Examples

:- encoding('UTF-8').

directive

include/1

Description

include(File)

Includes a file contents, which must be valid terms, at the place of occurrence of the directive. The file can be
specified as a relative path, an absolute path, or using library notation and is expanded as a source file name.
Relative paths are interpreted as relative to the path of the file containing the directive. The file extension is
optional.

When using the reflection API, predicates from an included file can be distinguished from predicates from the
main file by looking for the include/1 predicate declaration property or the include/1 predicate definition
property. For the included predicates, the line_count/1 property stores the term line number in the included
file.

This directive can be used as either a source file directive or an entity directive. As an entity directive, it can
be used both in entities defined in source files and with the entity creation built-in predicates. In the latter

194 Chapter 2. Reference Manual

http://www.iana.org/assignments/character-sets/character-sets.xhtml

The Logtalk Handbook, Release v3.61.0

case, the file should be specified using an absolute path or using library notation (which expands to a full
path) to avoid a fragile dependency on the current working directory.

Included files may contain an encoding/1 directive, which may specify the same encoding of the main file or
a different encoding.

Warning: When using this directive as an argument in calls to the create_object/4 and create_category/4
predicates, the objects and categories will not be recreated or redefined when the included file(s) are
modified and the logtalk_make/0 predicate or the logtalk_make/1 (with target all) predicates are called.

Template and modes

include(@source_file_name)

Examples

% include the "raw_1.txt" text file found
% on the "data" library directory:
:- include(data('raw_1.txt')).

% include a "factbase.pl" file in the same directory
% of the source file containing the directive:
:- include('factbase.pl').

% include a file given its absolute path:
:- include('/home/me/databases/countries.pl').

% create a wrapper object for a Prolog file using
% library notation to define the file path:
| ?- create_object(cities, [], [public(city/4), include(geo('cities.pl'))], []).

directive

initialization/1

Description

initialization(Goal)

When used within an object, this directive defines a goal to be called after the object has been successfully
loaded into memory. When used at a global level within a source file, this directive defines a goal to be called
after the source file is successfully compiled and loaded into memory.

The loading context can be accessed from this directive by calling the logtalk_load_context/2 predicate. Note
that the usable loading context keys depends on the directive scope (file or object).

Multiple initialization directives can be used in a source file or in an object. Their goals will be called in the
same order as the directives at loading time.

2.3. Directives 195

The Logtalk Handbook, Release v3.61.0

Note: Arbitrary goals cannot be used as directives in source files. Any goal that should be automatically
called when a source file is loaded must be wrapped using this directive.

Categories and protocols cannot contain initialization/1 directives as the initialization goals would lack
a complete execution context that is only available for objects.

Although technically a global initialization/1 directive in a source file is a Prolog directive, calls to Logtalk
built-in predicates from it are usually compiled to improve portability, improve performance, and provide
better support for embedded applications.

Warning: Some backend Prolog compilers declare the atom initialization as an operator for a lighter
syntax. But this makes the code non-portable and is therefore a practice best avoided.

Template and modes

initialization(@callable)

Examples

% call the init/0 predicate after loading the
% source file containing the directive

:- initialization(init).

% print a debug message after loading a
% source file defining an object

:- object(log).

:- initialization(start_date).

start_date :-
os::date_time(Year, Month, Day, _, _, _, _),
logtalk::print_message(debug, my_app, 'Starting date: ~d-~d-~d~n'+[Year,Month,Day]).

:- end_object.

See also:

logtalk_load_context/2

directive

196 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...])

Declares operators. Operators declared inside entities have local scope. Global operators can be declared
inside a source file by writing the respective directives before the entity opening directives.

Template and modes

op(+integer, +associativity, +atom_or_atom_list)

Examples

:- op(200, fy, +).
:- op(200, fy, ?).
:- op(200, fy, @).
:- op(200, fy, -).

See also:

current_op/3

directive

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets local flag values. The scope of this directive is the entity or the source file containing it. For global
scope, use the corresponding set_logtalk_flag/2 built-in predicate called from an initialization/1 directive.
For a description of the predefined compiler flags, consult the Compiler flags section in the User Manual. The
directive affects the compilation of all terms that follow it within scope of the directive.

Template and modes

set_logtalk_flag(+atom, +nonvar)

2.3. Directives 197

The Logtalk Handbook, Release v3.61.0

Errors

Flag is a variable:
instantiation_error

Value is a variable:
instantiation_error

Flag is not an atom:
type_error(atom, Flag)

Flag is neither a variable nor a valid flag:
domain_error(flag, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a read-only flag:
permission_error(modify, flag, Flag)

Examples

% turn off the compiler unknown entity warnings
% during the compilation of this source file:
:- set_logtalk_flag(unknown_entities, silent).

:- object(...).

% generate events for messages sent from this object:
:- set_logtalk_flag(events, allow).
...

% turn off suspicious call lint checks for the next predicate:
:- set_logtalk_flag(suspicious_calls, silent).
foo :-

...
:- set_logtalk_flag(suspicious_calls, warning).
...

2.3.2 Conditional compilation directives

directive

198 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

if/1

Description

if(Goal)

Starts conditional compilation. The code following the directive is compiled iff Goal is true. If Goal throws
an error instead of either succeeding or failing, the error is reported by the compiler and compilation of the
enclosing source file or entity is aborted. The goal is subjected to goal expansion when the directive occurs
in a source file. Conditional compilation directives can be nested.

Warning: Conditional compilation goals cannot depend on predicate definitions contained in the same
source file that contains the conditional compilation directives (as those predicates only become available
after the file is successfully compiled and loaded).

Template and modes

if(@callable)

Examples

A common example is checking if a built-in predicate exists and providing a definition when the predicate is
absent:

:- if(\+ predicate_property(length(_,_), built_in)).

length(List, Length) :-
...

:- endif.

Another common example is conditionally including code for a specific backend Prolog compiler:

:- if(current_logtalk_flag(prolog_dialect, swi)).

% SWI-Prolog specific code
:- set_prolog_flag(double_quotes, codes).

:- endif.

If necessary, test goal errors can be converted into failures using the standard catch/3 control construct. For
example:

:- if(catch(\+ log(7,_), _, fail)).

% define the legacy log/2 predicate
log(X, Y) :- Y is log(X).

:- endif.

2.3. Directives 199

The Logtalk Handbook, Release v3.61.0

See also:

elif/1, else/0, endif/0

directive

elif/1

Description

elif(Goal)

Supports embedded conditionals when performing conditional compilation. The code following the directive
is compiled iff Goal is true. If Goal throws an error instead of either succeeding or failing, the error is reported
by the compiler and compilation of the enclosing source file or entity is aborted. The goal is subjected to
goal expansion when the directive occurs in a source file.

Warning: Conditional compilation goals cannot depend on predicate definitions contained in the same
source file that contains the conditional compilation directives (as those predicates only become available
after the file is successfully compiled and loaded).

Template and modes

elif(@callable)

Examples

:- if(current_prolog_flag(double_quotes, codes)).

...

:- elif(current_prolog_flag(double_quotes, chars)).

...

:- elif(current_prolog_flag(double_quotes, atom)).

...

:- endif.

See also:

else/0, endif/0, if/1

directive

200 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

else/0

Description

else

Starts an else branch when performing conditional compilation. The code following this directive is compiled
iff the goal in the matching if/1 or elif/1 directive is false.

Template and modes

else

Examples

An example where a hypothetic application would have some limitations that the user should be made aware
when running on a backend Prolog compiler with bounded arithmetic:

:- if(current_prolog_flag(bounded, true)).

:- initialization(
logtalk::print_message(warning,app,bounded_arithmetic)

).

:- else.

:- initialization(
logtalk::print_message(comment,app,unbounded_arithmetic)

).

:- endif.

See also:

elif/1, endif/0, if/1

directive

endif/0

Description

endif

Ends conditional compilation for the matching if/1 directive.

2.3. Directives 201

The Logtalk Handbook, Release v3.61.0

Template and modes

endif

Examples

:- if(date::today(_,5,25)).

:- initialization(write('Happy Towel Day!\n')).

:- endif.

See also:

elif/1, else/0, if/1

2.3.3 Entity directives

directive

built_in/0

Description

built_in

Declares an entity as built-in. Built-in entities must be static and cannot be redefined once loaded. This
directive is used in the pre-defined protocols, categories, and objects that are automatically loaded at startup.

Template and modes

built_in

Examples

:- built_in.

directive

202 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

category/1-4

Description

category(Category)

category(Category,
implements(Protocols))

category(Category,
extends(Categories))

category(Category,
complements(Objects))

category(Category,
implements(Protocols),
extends(Categories))

category(Category,
implements(Protocols),
complements(Objects))

category(Category,
extends(Categories),
complements(Objects))

category(Category,
implements(Protocols),
extends(Categories),
complements(Objects))

Starting category directive.

Template and modes

category(+category_identifier)

category(+category_identifier,
implements(+implemented_protocols))

category(+category_identifier,
extends(+extended_categories))

category(+category_identifier,
complements(+complemented_objects))

category(+category_identifier,
implements(+implemented_protocols),
extends(+extended_categories))

(continues on next page)

2.3. Directives 203

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

category(+category_identifier,
implements(+implemented_protocols),
complements(+complemented_objects))

category(+category_identifier,
extends(+extended_categories),
complements(+complemented_objects))

category(+category_identifier,
implements(+implemented_protocols),
extends(+extended_categories),
complements(+complemented_objects))

Examples

:- category(monitoring).

:- category(monitoring,
implements(monitoringp)).

:- category(attributes,
implements(protected::variables)).

:- category(extended,
extends(minimal)).

:- category(logging,
implements(monitoring),
complements(employee)).

See also:

end_category/0

directive

dynamic/0

Description

dynamic

Declares an entity and its contents as dynamic. Dynamic entities can be abolished at runtime.

Warning: Some backend Prolog compilers declare the atom dynamic as an operator for a lighter syntax,
forcing writing this atom between parenthesis when using this directive.

204 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Template and modes

dynamic

Examples

:- dynamic.

See also:

dynamic/1, object_property/2, protocol_property/2, category_property/2

directive

end_category/0

Description

end_category

Ending category directive.

Template and modes

end_category

Examples

:- end_category.

See also:

category/1-4

directive

end_object/0

Description

end_object

Ending object directive.

2.3. Directives 205

The Logtalk Handbook, Release v3.61.0

Template and modes

end_object

Examples

:- end_object.

See also:

object/1-5

directive

end_protocol/0

Description

end_protocol

Ending protocol directive.

Template and modes

end_protocol

Examples

:- end_protocol.

See also:

protocol/1-2

directive

info/1

Description

info([Key is Value, ...])

Documentation directive for objects, protocols, and categories. The directive argument is a list of pairs using
the format Key is Value. See the Entity directives section for a description of the default keys.

206 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Template and modes

info(+entity_info_list)

Examples

:- info([
version is 1:0:0,
author is 'Paulo Moura',
date is 2000-11-20,
comment is 'List protocol.'

]).

See also:

info/2, object_property/2, protocol_property/2, category_property/2

directive

object/1-5

Description

Stand-alone objects (prototypes)

object(Object)

object(Object,
implements(Protocols))

object(Object,
imports(Categories))

object(Object,
implements(Protocols),
imports(Categories))

Prototype extensions

object(Object,
extends(Objects))

object(Object,
implements(Protocols),
extends(Objects))

object(Object,
imports(Categories),
extends(Objects))

object(Object,

(continues on next page)

2.3. Directives 207

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

implements(Protocols),
imports(Categories),
extends(Objects))

Class instances

object(Object,
instantiates(Classes))

object(Object,
implements(Protocols),
instantiates(Classes))

object(Object,
imports(Categories),
instantiates(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes))

Classes

object(Object,
specializes(Classes))

object(Object,
implements(Protocols),
specializes(Classes))

object(Object,
imports(Categories),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
specializes(Classes))

Classes with metaclasses

object(Object,
instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
instantiates(Classes),
specializes(Classes))

object(Object,
imports(Categories),

(continues on next page)

208 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes),
specializes(Classes))

Starting object directive.

Template and modes

Stand-alone objects (prototypes)

object(+object_identifier)

object(+object_identifier,
implements(+implemented_protocols))

object(+object_identifier,
imports(+imported_categories))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories))

Prototype extensions

object(+object_identifier,
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
extends(+extended_objects))

object(+object_identifier,
imports(+imported_categories),
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
extends(+extended_objects))

Class instances

object(+object_identifier,
instantiates(+instantiated_objects))

object(+object_identifier,

(continues on next page)

2.3. Directives 209

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

implements(+implemented_protocols),
instantiates(+instantiated_objects))

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects))

Classes

object(+object_identifier,
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
specializes(+specialized_objects))

object(+object_identifier,
imports(+imported_categories),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
specializes(+specialized_objects))

Class with metaclasses

object(+object_identifier,
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

210 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

:- object(list).

:- object(list,
implements(listp)).

:- object(list,
extends(compound)).

:- object(list,
implements(listp),
extends(compound)).

:- object(object,
imports(initialization),
instantiates(class)).

:- object(abstract_class,
instantiates(class),
specializes(object)).

:- object(agent,
imports(private::attributes)).

See also:

end_object/0

directive

protocol/1-2

Description

protocol(Protocol)

protocol(Protocol,
extends(Protocols))

Starting protocol directive.

Template and modes

protocol(+protocol_identifier)

protocol(+protocol_identifier,
extends(+extended_protocols))

2.3. Directives 211

The Logtalk Handbook, Release v3.61.0

Examples

:- protocol(listp).

:- protocol(listp,
extends(compoundp)).

:- protocol(queuep,
extends(protected::listp)).

See also:

end_protocol/0

directive

threaded/0

Description

threaded

Declares that an object supports threaded engines, concurrent calls, and asynchronous messages. Any object
containing calls to the built-in multi-threading predicates (or importing a category that contains such calls)
must include this directive.

This directive results in the automatic creation and set up of an object message queue when the object
is loaded or created at runtime. Object message queues are used for exchanging thread notifications and
for storing concurrent goal solutions and replies to the multi-threading calls made within the object. The
message queue for the user pseudo-object is automatically created at Logtalk startup (provided that multi-
threading programming is supported and enabled for the chosen backend Prolog compiler).

Note: This directive requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Template and modes

threaded

Examples

:- threaded.

See also:

synchronized/1, object_property/2

directive

212 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

uses/1

Description

uses([Object as Alias, ...])

Declares object aliases. Typically used to shorten long object names, to simplify and consistently send mes-
sages to parameterized objects, and to simplify using or experimenting with different object implementations
of the same protocol when using explicit message sending. Object aliases are local to the object (or category)
where they are defined.

The objects being aliased can be parameter variables or parametric objects where one of more parameters
are parameter variables when using the directive in a parametric object or a parametric category defined in
a source file (the common case).

Declaring multiple aliases for the same object is allowed. But repeated declarations of the same alias,
declaring an alias for an object alias, and redefining an alias to reference a different object are reported as
compilation errors.

To enable the use of static binding, and thus optimal message sending performance, the objects should be
loaded before compiling the entities that call their predicates.

Template and modes

uses(+object_alias_list)

Examples

:- object(foo(_HeapType_, _OptionsObject_)).

:- uses([
fast_random as rnd,
time(utc) as time,
heap(_HeapType_) as heap,
OptionsObject as options

]).

bar :-
...,
% the same as fast_random::permutation(L, P)
rnd::permutation(L, P),
% the same as heap(_HeapType_)::as_heap(L, H)
heap::as_heap(L, H),
% the same as _OptionsObject_::get(foo, X)
options::get(foo, X),
% the same as time(utc)::now(T)
time::now(T),
...

See also:

uses/2, use_module/1, use_module/2

2.3. Directives 213

The Logtalk Handbook, Release v3.61.0

directive

use_module/1

Description

use_module([Module as Alias, ...])

Declares module aliases. Typically used to shorten long module names and to simplify using or experimenting
with different module implementations of the same predicates when using explicitly-qualified calls. Module
aliases are local to the object (or category) where they are defined.

The modules being aliased can be parameter variables when using the directive in a parametric object or a
parametric category defined in a source file (the common case).

Declaring multiple aliases for the same module is allowed. But repeated declarations of the same alias,
declaring an alias for a module alias, and redefining an alias to reference a different module are reported as
compilation errors.

To enable the use of static binding, and thus optimal predicate call performance, the modules should be
loaded before compiling the entities that call their predicates.

Note that this directive semantics differs from the directive with the same name found on some Prolog
implementations where it is used to load a module and import all its exported predicates.

Template and modes

use_module(+module_alias_list)

Examples

:- object(foo(_DataModule_)).

:- use_module([
data_noise_handler as cleaner,
DataModule as data

]).

bar :-
...,
% the same as _DataModule_:xy(X, Y)
data:xy(X, Y),
% the same as data_noise_handler:filter(X, Y)
cleaner:filter(X, Y, Z),
...

See also:

uses/1, uses/2, use_module/2

214 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.3.4 Predicate directives

directive

alias/2

Description

alias(Entity, [Name/Arity as Alias/Arity, ...])
alias(Entity, [Name//Arity as Alias//Arity, ...])

Declares predicate and grammar rule non-terminal aliases. A predicate (non-terminal) alias is an alternative
name for a predicate (non-terminal) declared or defined in an extended protocol, an implemented protocol,
an extended category, an imported category, an extended prototype, an instantiated class, or a specialized
class. Predicate aliases may be used to solve conflicts between imported or inherited predicates. It may also
be used to give a predicate (non-terminal) a name more appropriated in its usage context. This directive
may be used in objects, protocols, and categories.

Predicate (and non-terminal) aliases are specified using (preferably) the notation Name/Arity as Alias/
Arity or, in alternative, the notation Name/Arity::Alias/Arity.

It is also possible to declare predicate and grammar rule non-terminal aliases in implicit qualification direc-
tives for sending messages to objects and calling module predicates.

Template and modes

alias(@entity_identifier, +list(predicate_indicator_alias))
alias(@entity_identifier, +list(non_terminal_indicator_alias))

Examples

% resolve a predicate name conflict:
:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

% define an alternative name for a non-terminal:
:- alias(words, [singular//0 as peculiar//0]).

See also:

uses/2, use_module/2, uses/1

directive

2.3. Directives 215

The Logtalk Handbook, Release v3.61.0

coinductive/1

Description

coinductive(Name/Arity)
coinductive((Name/Arity, ...))
coinductive([Name/Arity, ...])

coinductive(Name//Arity)
coinductive((Name//Arity, ...))
coinductive([Name//Arity, ...])

coinductive(Template)
coinductive((Template1, ...))
coinductive([Template1, ...])

This is an experimental directive, used for declaring coinductive predicates. Requires a backend Prolog
compiler with minimal support for cyclic terms. The current implementation of coinduction allows the gen-
eration of only the basic cycles but all valid solutions should be recognized. Use a predicate indicator or a
non-terminal indicator as argument when all the coinductive predicate arguments are relevant for coinduc-
tive success. Use a template when only some coinductive predicate arguments (represented by a “+”) should
be considered when testing for coinductive success (represent the arguments that should be disregarded by
a “-“). It’s possible to define local coinductive_success_hook/1-2 predicates that are automatically called with
the coinductive predicate term resulting from a successful unification with an ancestor goal as first argument.
The second argument, when present, is the coinductive hypothesis (i.e. the ancestor goal) used. These hook
predicates can provide an alternative to the use of tabling when defining some coinductive predicates. There
is no overhead when these hook predicates are not defined.

This directive must precede any calls to the declared coinductive predicates.

Template and modes

coinductive(+predicate_indicator_term)
coinductive(+non_terminal_indicator_term)
coinductive(+coinductive_predicate_template_term)

Examples

:- coinductive(comember/2).
:- coinductive(ones_and_zeros//0).
:- coinductive(controller(+,+,+,-,-)).

See also:

coinductive_success_hook/1-2, predicate_property/2

directive

216 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

discontiguous/1

Description

discontiguous(Name/Arity)
discontiguous((Name/Arity, ...))
discontiguous([Name/Arity, ...])

discontiguous(Name//Arity)
discontiguous((Name//Arity, ...))
discontiguous([Name//Arity, ...])

Declares discontiguous predicates and discontiguous grammar rule non-terminals. The use of this directive
should be avoided as not all backend Prolog compilers support discontiguous predicates.

Warning: Some backend Prolog compilers declare the atom discontiguous as an operator for a lighter
syntax. But this makes the code non-portable and is therefore a practice best avoided.

Template and modes

discontiguous(+predicate_indicator_term)
discontiguous(+non_terminal_indicator_term)

Examples

:- discontiguous(counter/1).

:- discontiguous((lives/2, works/2)).

:- discontiguous([db/4, key/2, file/3]).

directive

dynamic/1

Description

dynamic(Name/Arity)
dynamic((Name/Arity, ...))
dynamic([Name/Arity, ...])

dynamic(Entity::Name/Arity)
dynamic((Entity::Name/Arity, ...))
dynamic([Entity::Name/Arity, ...])

dynamic(Module:Name/Arity)
dynamic((Module:Name/Arity, ...))

(continues on next page)

2.3. Directives 217

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

dynamic([Module:Name/Arity, ...])

dynamic(Name//Arity)
dynamic((Name//Arity, ...))
dynamic([Name//Arity, ...])

dynamic(Entity::Name//Arity)
dynamic((Entity::Name//Arity, ...))
dynamic([Entity::Name//Arity, ...])

dynamic(Module:Name//Arity)
dynamic((Module:Name//Arity, ...))
dynamic([Module:Name//Arity, ...])

Declares dynamic predicates and dynamic grammar rule non-terminals. Note that an object can be static and
have both static and dynamic predicates/non-terminals. When the dynamic predicates are local to an object,
declaring them also as private predicates allows the Logtalk compiler to generate optimized code for asserting
and retracting predicate clauses. Categories can also contain dynamic predicate directives but cannot contain
clauses for dynamic predicates.

The predicate indicators (or non-terminal indicators) can be explicitly qualified with an object, category, or
module identifier when the predicates (or non-terminals) are also declared multifile.

Note that dynamic predicates cannot be declared synchronized (when necessary, declare the predicates
updating the dynamic predicates as synchronized).

Warning: Some backend Prolog compilers declare the atom dynamic as an operator for a lighter syntax.
But this makes the code non-portable and is therefore a practice best avoided.

Template and modes

dynamic(+qualified_predicate_indicator_term)
dynamic(+qualified_non_terminal_indicator_term)

Examples

:- dynamic(counter/1).

:- dynamic((lives/2, works/2)).

:- dynamic([db/4, key/2, file/3]).

See also:

dynamic/0, predicate_property/2

directive

218 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

info/2

Description

info(Name/Arity, [Key is Value, ...])
info(Name//Arity, [Key is Value, ...])

Documentation directive for predicates and grammar rule non-terminals. The first argument is either a
predicate indicator or a grammar rule non-terminal indicator. The second argument is a list of pairs using
the format Key is Value. See the Predicate directives section for a description of the default keys.

Template and modes

info(+predicate_indicator, +predicate_info_list)
info(+non_terminal_indicator, +predicate_info_list)

Examples

:- info(empty/1, [
comment is 'True if the argument is an empty list.',
argnames is ['List']

]).

:- info(sentence//0, [
comment is 'Rewrites a sentence into a noun phrase and a verb phrase.'

]).

See also:

info/1, mode/2, predicate_property/2

directive

meta_predicate/1

Description

meta_predicate(Template)
meta_predicate((Template, ...))
meta_predicate([Template, ...])

meta_predicate(Entity::Template)
meta_predicate((Entity::Template, ...))
meta_predicate([Entity::Template, ...])

meta_predicate(Module:Template)
meta_predicate((Module:Template, ...))
meta_predicate([Module:Template, ...])

2.3. Directives 219

The Logtalk Handbook, Release v3.61.0

Declares meta-predicates, i.e., predicates that have arguments that will be called as goals. An argument may
also be a closure instead of a goal if the meta-predicate uses the call/1-N Logtalk built-in methods to construct
and call the actual goal from the closure and the additional arguments.

Meta-arguments which are goals are represented by the integer 0. Meta-arguments which are closures are
represented by a positive integer, N, representing the number of additional arguments that will be appended
to the closure in order to construct the corresponding meta-call. Meta-arguments that will be called using
the bagof/3 or setof/3 predicates and that can thus be existentially-qualified are represented by the atom ^.
Normal arguments are represented by the atom *. Meta-arguments are always called in the meta-predicate
calling context, not in the meta-predicate definition context.

Logtalk allows the use of this directive to override the original meta-predicate directive. This is sometimes
necessary when calling Prolog built-in meta-predicates or Prolog module meta-predicates due to the lack of
standardization of the syntax of the meta-predicate templates.

Warning: Some backend Prolog compilers declare the atom meta_predicate as an operator for a lighter
syntax. But this makes the code non-portable and is therefore a practice best avoided.

Template and modes

meta_predicate(+meta_predicate_template_term)

meta_predicate(+object_identifier::+meta_predicate_template_term)
meta_predicate(+category_identifier::+meta_predicate_template_term)

meta_predicate(+module_identifier:+meta_predicate_template_term)

Examples

% findall/3 second argument is interpreted as a goal:
:- meta_predicate(findall(*, 0, *)).

% both forall/2 arguments are interpreted as goals:
:- meta_predicate(forall(0, 0)).

% maplist/3 first argument is interpreted as a closure
% that will be expanded to a goal by appending two
% arguments:
:- meta_predicate(maplist(2, *, *)).

See also:

meta_non_terminal/1, predicate_property/2

directive

220 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

meta_non_terminal/1

Description

meta_non_terminal(Template)
meta_non_terminal((Template, ...))
meta_non_terminal([Template, ...])

meta_non_terminal(Entity::Template)
meta_non_terminal((Entity::Template, ...))
meta_non_terminal([Entity::Template, ...])

meta_non_terminal(Module:Template)
meta_non_terminal((Module:Template, ...))
meta_non_terminal([Module:Template, ...])

Declares meta-non-terminals, i.e., non-terminals that have arguments that will be called as non-terminals
(or grammar rule bodies). An argument may also be a closure instead of a goal if the non-terminal uses the
call//1-N Logtalk built-in methods to construct and call the actual non-terminal from the closure and the
additional arguments.

Meta-arguments which are non-terminals are represented by the integer 0. Meta-arguments which are clo-
sures are represented by a positive integer, N, representing the number of additional arguments that will be
appended to the closure in order to construct the corresponding meta-call. Normal arguments are repre-
sented by the atom *. Meta-arguments are always called in the meta-non-terminal calling context, not in the
meta-non-terminal definition context.

Template and modes

meta_non_terminal(+meta_non_terminal_template_term)

meta_non_terminal(+object_identifier::+meta_non_terminal_template_term)
meta_non_terminal(+category_identifier::+meta_non_terminal_template_term)

meta_non_terminal(+module_identifier:+meta_non_terminal_template_term)

Examples

:- meta_non_terminal(phrase(1, *)).
phrase(X, T) --> call(X, T).

See also:

meta_predicate/1, predicate_property/2

directive

2.3. Directives 221

The Logtalk Handbook, Release v3.61.0

mode/2

Description

mode(Mode, NumberOfProofs)

Most predicates can be used with several instantiations modes. This directive enables the specification of
each instantiation mode and the corresponding number of proofs (not necessarily distinct solutions). You may
also use this directive for documenting grammar rule non-terminals.

Template and modes

mode(+predicate_mode_term, +number_of_proofs)
mode(+non_terminal_mode_term, +number_of_proofs)

Examples

:- mode(atom_concat(-atom, -atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), one).

:- mode(var(@term), zero_or_one).

:- mode(solve(+callable, -list(atom)), zero_or_one).

See also:

info/2, predicate_property/2

directive

multifile/1

Description

multifile(Name/Arity)
multifile((Name/Arity, ...))
multifile([Name/Arity, ...])

multifile(Entity::Name/Arity)
multifile((Entity::Name/Arity, ...))
multifile([Entity::Name/Arity, ...])

multifile(Module:Name/Arity)
multifile((Module:Name/Arity, ...))
multifile([Module:Name/Arity, ...])

multifile(Name//Arity)
multifile((Name//Arity, ...))
multifile([Name//Arity, ...])

(continues on next page)

222 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

multifile(Entity::Name//Arity)
multifile((Entity::Name//Arity, ...))
multifile([Entity::Name//Arity, ...])

multifile(Module:Name//Arity)
multifile((Module:Name//Arity, ...))
multifile([Module:Name//Arity, ...])

Declares multifile predicates and multifile grammar rule non-terminals. In the case of object or category
multifile predicates, the predicate (or non-terminal) must also have a scope directive in the object or category
holding its primary declaration (i.e. the declaration without the Entity:: prefix). Entities holding multifile
predicate primary declarations must be compiled and loaded prior to any entities contributing with clauses
for the multifile predicates (to prevent using multifile predicates to break entity encapsulation).

Protocols cannot declare or define multifile predicates as protocols cannot contain predicate definitions.

Warning: Some backend Prolog compilers declare the atom multifile as an operator for a lighter
syntax. But this makes the code non-portable and is therefore a practice best avoided.

Template and modes

multifile(+qualified_predicate_indicator_term)
multifile(+qualified_non_terminal_indicator_term)

Examples

:- multifile(table/3).
:- multifile(user::hook/2).

See also:

public/1, protected/1, private/1, predicate_property/2

directive

private/1

Description

private(Name/Arity)
private((Name/Arity, ...))
private([Name/Arity, ...])

private(Name//Arity)
private((Name//Arity, ...))
private([Name//Arity, ...])

(continues on next page)

2.3. Directives 223

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

private(op(Precedence,Associativity,Operator))
private((op(Precedence,Associativity,Operator), ...))
private([op(Precedence,Associativity,Operator), ...])

Declares private predicates, private grammar rule non-terminals, and private operators. A private predicate
can only be called from the object containing the private directive. A private non-terminal can only be used
in a call of the phrase/2 and phrase/3 methods from the object containing the private directive.

Template and modes

private(+predicate_indicator_term)
private(+non_terminal_indicator_term)
private(+operator_declaration)

Examples

:- private(counter/1).

:- private((init/1, free/1)).

:- private([data/3, key/1, keys/1]).

See also:

protected/1, public/1, predicate_property/2

directive

protected/1

Description

protected(Name/Arity)
protected((Name/Arity, ...))
protected([Name/Arity, ...])

protected(Name//Arity)
protected((Name//Arity, ...))
protected([Name//Arity, ...])

protected(op(Precedence,Associativity,Operator))
protected((op(Precedence,Associativity,Operator), ...))
protected([op(Precedence,Associativity,Operator), ...])

Declares protected predicates, protected grammar rule non-terminals, and protected operators. A protected
predicate can only be called from the object containing the directive or from an object that inherits the

224 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

directive. A protected non-terminal can only be used as an argument in a phrase/2 and phrase/3 calls from
the object containing the directive or from an object that inherits the directive.

Note: Protected operators are not inherited but declaring them provides a reusable specification for using
them in descendant objects (or categories).

Template and modes

protected(+predicate_indicator_term)
protected(+non_terminal_indicator_term)
protected(+operator_declaration)

Examples

:- protected(init/1).

:- protected((print/2, convert/4)).

:- protected([load/1, save/3]).

See also:

private/1, public/1, predicate_property/2

directive

public/1

Description

public(Name/Arity)
public((Name/Arity, ...))
public([Name/Arity, ...])

public(Name//Arity)
public((Name//Arity, ...))
public([Name//Arity, ...])

public(op(Precedence,Associativity,Operator))
public((op(Precedence,Associativity,Operator), ...))
public([op(Precedence,Associativity,Operator), ...])

Declares public predicates, public grammar rule non-terminals, and public operators. A public predicate can
be called from any object. A public non-terminal can be used as an argument in phrase/2 and phrase/3 calls
from any object.

Note: Declaring a public operator does not make it global when the entity holding the scope directive is
compiled and loaded. But declaring public operators provides a reusable specification for using them in the

2.3. Directives 225

The Logtalk Handbook, Release v3.61.0

entity clients.

Template and modes

public(+predicate_indicator_term)
public(+non_terminal_indicator_term)
public(+operator_declaration)

Examples

:- public(ancestor/1).

:- public((instance/1, instances/1)).

:- public([leaf/1, leaves/1]).

See also:

private/1, protected/1, predicate_property/2

directive

synchronized/1

Description

synchronized(Name/Arity)
synchronized((Name/Arity, ...))
synchronized([Name/Arity, ...])

synchronized(Name//Arity)
synchronized((Name//Arity, ...))
synchronized([Name//Arity, ...])

Declares synchronized predicates and synchronized grammar rule non-terminals. The most common use is
for predicates that have side effects (e.g. asserting or retracting clauses for a dynamic predicate) in multi-
threaded applications. A synchronized predicate (or synchronized non-terminal) is protected by a mutex in
order to allow for thread synchronization when proving a call to the predicate (or non-terminal).

All predicates (and non-terminals) declared in the same synchronized directive share the same mutex. In
order to use a separate mutex for each predicate (non-terminal) so that they are independently synchronized,
a per-predicate synchronized directive must be used.

Warning: Declaring a predicate synchronized implicitly makes it deterministic. When using a single-
threaded backend Prolog compiler, calls to synchronized predicates behave as wrapped by the standard
once/1 meta-predicate.

Note that synchronized predicates cannot be declared dynamic (when necessary, declare the predicates up-
dating the dynamic predicates as synchronized).

226 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Template and modes

synchronized(+predicate_indicator_term)
synchronized(+non_terminal_indicator_term)

Examples

:- synchronized(db_update/1).

:- synchronized((write_stream/2, read_stream/2)).

:- synchronized([add_to_queue/2, remove_from_queue/2]).

See also:

predicate_property/2

directive

uses/2

Description

uses(Object, [Name/Arity, ...])
uses(Object, [Name/Arity as Alias/Arity, ...])

uses(Object, [Predicate as Alias, ...])

uses(Object, [Name//Arity, ...])
uses(Object, [Name//Arity as Alias//Arity, ...])

uses(Object, [op(Precedence, Associativity, Operator), ...])

Declares that all calls made from predicates (or non-terminals) defined in the category or object containing
the directive to the specified predicates (or non-terminals) are to be interpreted as messages to the specified
object. Thus, this directive may be used to simplify writing of predicate definitions by allowing the program-
mer to omit the Object:: prefix when using the predicates listed in the directive (as long as the calls do
not occur as arguments for non-standard Prolog meta-predicates not declared on the adapter files). It is also
possible to include operator declarations in the second argument.

This directive is also taken into account when compiling calls to the database and reflection built-in methods
by looking into these methods predicate arguments if bound at compile time.

It is possible to specify a predicate alias using the notation Name/Arity as Alias/Arity or, in alternative,
the notation Name/Arity::Alias/Arity. Aliases may be used either for avoiding conflicts between predicates
specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates. For predicates, is also possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation Predicate::Alias, where Predicate and Alias are
callable terms where some or all arguments may be instantiated.

To enable the use of static binding, and thus optimal message sending performance, the objects should be
loaded before compiling the entities that call their predicates.

2.3. Directives 227

The Logtalk Handbook, Release v3.61.0

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter variable must be instantiated at
runtime when the messages are sent.

Template and modes

uses(+object_identifier, +predicate_indicator_list)
uses(+object_identifier, +predicate_indicator_alias_list)

uses(+object_identifier, +predicate_template_alias_list)

uses(+object_identifier, +non_terminal_indicator_list)
uses(+object_identifier, +non_terminal_indicator_alias_list)

uses(+object_identifier, +operator_list)

Examples

:- uses(list, [append/3, member/2]).
:- uses(store, [data/2]).
:- uses(user, [table/4]).

foo :-
...,
% the same as findall(X, list::member(X, L), A)
findall(X, member(X, L), A),
% the same as list::append(A, B, C)
append(A, B, C),
% the same as store::assertz(data(X, C))
assertz(data(X, C)),
% call the table/4 predicate in "user"
table(X, Y, Z, T),
...

Another example, using the extended notation that allows us to define predicate aliases:

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

btree_to_queue :-
...,
% the same as btrees::new(Tree)
new_btree(Tree),
% the same as queues::new(Queue)
new_queue(Queue),
...

An example of defining a predicate alias that is also a shorthand:

228 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

:- uses(logtalk, [
print_message(debug, my_app, Message) as dbg(Message)

]).

Predicate aliases can also be used to change argument order:

:- uses(meta, [
fold_left(Closure,Accumulator,List,Result) as foldl(Closure,List,Accumulator,Result)

]).

An example of using a parameter variable in place of the object identifier to allow using the same test set for
checking multiple implementations of the same protocol:

:- object(tests(_HeapObject_),
extends(lgtunit)).

:- uses(_HeapObject_, [
as_heap/2, as_list/2, valid/1, new/1,
insert/4, insert_all/3, delete/4, merge/3,
empty/1, size/2, top/3, top_next/5

]).

See also:

uses/1, use_module/1, use_module/2, alias/2

directive

use_module/2

Description

use_module(Module, [Name/Arity, ...])
use_module(Module, [Name/Arity as Alias/Arity, ...])

use_module(Module, [Predicate as Alias, ...])

use_module(Module, [Name//Arity, ...])
use_module(Module, [Name//Arity as Alias//Arity, ...])

use_module(Module, [op(Precedence,Associativity,Operator), ...])

This directive declares that all calls (made from predicates defined in the category or object containing the
directive) to the specified predicates (or non-terminals) are to be interpreted as calls to explicitly-qualified
module predicates (or non-terminals). Thus, this directive may be used to simplify writing of predicate
definitions by allowing the programmer to omit the Module: prefix when using the predicates listed in the
directive (as long as the predicate calls do not occur as arguments for non-standard Prolog meta-predicates
not declared on the adapter files). It is also possible to include operator declarations in the second argument.

This directive is also taken into account when compiling calls to the database and reflection built-in methods
by looking into these methods predicate arguments if bound at compile time.

It is possible to specify a predicate alias using the notation Name/Arity as Alias/Arity or, in alternative,
the notation Name/Arity:Alias/Arity. Aliases may be used either for avoiding conflicts between predicates

2.3. Directives 229

The Logtalk Handbook, Release v3.61.0

specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates. For predicates, is also possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation Predicate::Alias, where Predicate and Alias are
callable terms where some or all arguments may be instantiated.

Note that this directive differs from the directive with the same name found on some Prolog implementations
by requiring the first argument to be a module name (an atom) instead of a file specification. In Logtalk,
there’s no mixing between loading a resource and (declaring the) using (of) a resource. As a consequence,
this directive doesn’t automatically load the module. Loading the module file is dependent of the used back-
end Prolog compiler and must be done separately (usually, using a source file directive such as use_module/1
or use_module/2 in the entity file or preferably in the application loader file file). Also, note that the name of
the module may differ from the name of the module file.

Warning: The modules must be loaded prior to the compilation of entities that call the module pred-
icates. This is required in general to allow the compiler to check if the called module predicate is a
meta-predicate and retrieve its meta-predicate template to ensure proper call compilation.

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter variable must be instantiated at
runtime when the calls are made.

Template and modes

use_module(+module_identifier, +predicate_indicator_list)
use_module(+module_identifier, +module_predicate_indicator_alias_list)

use_module(+module_identifier, +predicate_template_alias_list)

use_module(+module_identifier, +non_terminal_indicator_list)
use_module(+module_identifier, +module_non_terminal_indicator_alias_list)

use_module(+module_identifier, +operator_list)

Examples

:- use_module(lists, [append/3, member/2]).
:- use_module(store, [data/2]).
:- use_module(user, [foo/1 as bar/1]).

foo :-
...,
% same as findall(X, lists:member(X, L), A)
findall(X, member(X, L), A),
% same as lists:append(A, B, C)
append(A, B, C),
% same as assertz(store:data(X, C))
assertz(data(X, C)),
% same as retractall(user:foo(_))

(continues on next page)

230 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

retractall(bar(_)),
...

Another example, using the extended notation that allows us to define predicate aliases:

:- use_module(ugraphs, [transpose_ugraph/2 as transpose/2]).

convert_graph :-
...,
% the same as ugraphs:transpose_ugraph(Graph0, Graph)
transpose(Graph0, Graph),
...

An example of defining a predicate alias that is also a shorthand:

:- use_module(pairs, [
map_list_to_pairs(length, Lists, Pairs) as length_pairs(Lists, Pairs)

]).

An example of using a parameter variable in place of the module identifier to delay to runtime the actual
module to use:

:- object(bar(_OptionsModule_)).

:- use_module(_OptionsModule_, [
set/2, get/2, reset/0

]).

See also:

use_module/1, uses/2, uses/1, alias/2

2.4 Built-in predicates

2.4.1 Enumerating objects, categories and protocols

built-in predicate

current_category/1

Description

current_category(Category)

Enumerates, by backtracking, all currently defined categories. All categories are found, either static, dy-
namic, or built-in.

2.4. Built-in predicates 231

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

current_category(?category_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Examples

% enumerate the defined categories:
| ?- current_category(Category).

Category = core_messages ;
...

See also:

abolish_category/1, category_property/2, create_category/4, complements_object/2, extends_category/2-3,
imports_category/2-3

built-in predicate

current_object/1

Description

current_object(Object)

Enumerates, by backtracking, all currently defined objects. All objects are found, either static, dynamic or
built-in.

Modes and number of proofs

current_object(?object_identifier) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

232 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

% enumerate the defined objects:
| ?- current_object(Object).

Object = user ;
Object = logtalk ;
...

See also:

abolish_object/1, create_object/4, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

built-in predicate

current_protocol/1

Description

current_protocol(Protocol)

Enumerates, by backtracking, all currently defined protocols. All protocols are found, either static, dynamic,
or built-in.

Modes and number of proofs

current_protocol(?protocol_identifier) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Examples

% enumerate the defined protocols:
| ?- current_protocol(Protocol).

Protocol = expanding ;
Protocol = monitoring ;
Protocol = forwarding ;
...

See also:

abolish_protocol/1, create_protocol/3, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4. Built-in predicates 233

The Logtalk Handbook, Release v3.61.0

2.4.2 Enumerating objects, categories and protocols properties

built-in predicate

category_property/2

Description

category_property(Category, Property)

Enumerates, by backtracking, the properties associated with the defined categories. The valid properties
are listed in the language grammar section on entity properties and described in the User Manual section on
category properties.

Modes and number of proofs

category_property(?category_identifier, ?category_property) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid category property:
domain_error(category_property, Property)

Examples

% enumerate the properties of the core_messages built-in category:
| ?- category_property(core_messages, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also:

abolish_category/1, create_category/4, current_category/1, complements_object/2, extends_category/2-3,
imports_category/2-3

built-in predicate

234 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

object_property/2

Description

object_property(Object, Property)

Enumerates, by backtracking, the properties associated with the defined objects. The valid properties are
listed in the language grammar section on entity properties and described in the User Manual section on
object properties.

Modes and number of proofs

object_property(?object_identifier, ?object_property) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid object property:
domain_error(object_property, Property)

Examples

% enumerate the properties of the logtalk built-in object:
| ?- object_property(logtalk, Property).

Property = context_switching_calls ;
Property = source_data ;
Property = threaded ;
Property = static ;
Property = built_in ;
...

See also:

abolish_object/1, create_object/4, current_object/1, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

built-in predicate

2.4. Built-in predicates 235

The Logtalk Handbook, Release v3.61.0

protocol_property/2

Description

protocol_property(Protocol, Property)

Enumerates, by backtracking, the properties associated with the currently defined protocols. The valid
properties are listed in the language grammar section on entity properties and described in the User Manual
section on protocol properties.

Modes and number of proofs

protocol_property(?protocol_identifier, ?protocol_property) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid protocol property:
domain_error(protocol_property, Property)

Examples

% enumerate the properties of the monitoring built-in protocol:
| ?- protocol_property(monitoring, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also:

abolish_protocol/1, create_protocol/3, current_protocol/1, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.3 Creating new objects, categories and protocols

built-in predicate

236 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

create_category/4

Description

create_category(Identifier, Relations, Directives, Clauses)

Creates a new, dynamic category. This predicate is often used as a primitive to implement high-level category
creation methods.

Note that, when opting for runtime generated category identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic category in long-running applications, is to recycle, whenever possible, the identifiers.

When creating a new dynamic parametric category, access to the object parameters must use the parameter/2
built-in execution context method.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_category(?category_identifier, @list(category_relation), @list(category_directive),␣
→˓@list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error

Identifier is neither a variable nor a valid category identifier:
type_error(category_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, complements/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Clauses is neither a variable nor a proper list:
type_error(list, Clauses)

2.4. Built-in predicates 237

The Logtalk Handbook, Release v3.61.0

Examples

| ?- create_category(
tolerances,
[implements(comparing)],
[],
[epsilon(1e-15), (equal(X, Y) :- epsilon(E), abs(X-Y) =< E)]

).

See also:

abolish_category/1, category_property/2, current_category/1, complements_object/2, extends_category/2-3,
imports_category/2-3

built-in predicate

create_object/4

Description

create_object(Identifier, Relations, Directives, Clauses)

Creates a new, dynamic object. The word object is used here as a generic term. This predicate can be used
to create new prototypes, instances, and classes. This predicate is often used as a primitive to implement
high-level object creation methods.

Note that, when opting for runtime generated object identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic objects in long-running applications, is to recycle, whenever possible, the identifiers.

When creating a new dynamic parametric object, access to the object parameters must use the parameter/2
built-in execution context method.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_object(?object_identifier, @list(object_relation), @list(object_directive),␣
→˓@list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error

Identifier is neither a variable nor a valid object identifier:
type_error(object_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

238 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, imports/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, instantiates/1)

permission_error(repeat, entity_relation, specializes/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Clauses is neither a variable nor a proper list:
type_error(list, Clauses)

Examples

% create a stand-alone object (a prototype):
| ?- create_object(

translator,
[],
[public(int/2)],
[int(0, zero)]

).

% create a prototype derived from a parent prototype:
| ?- create_object(

mickey,
[extends(mouse)],
[public(alias/1)],
[alias(mortimer)]

).

% create a class instance:
| ?- create_object(

p1,
[instantiates(person)],
[],
[name('Paulo Moura'), age(42)]

).

% create a subclass:
| ?- create_object(

hovercraft,
[specializes(vehicle)],
[public([propeller/2, fan/2])],
[]

).

% create an object with an initialization goal:
| ?- create_object(

runner,

(continues on next page)

2.4. Built-in predicates 239

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

[instantiates(runners)],
[initialization(::start)],
[length(22), time(60)]

).

% create an object supporting dynamic predicate declarations:
| ?- create_object(

database,
[],
[set_logtalk_flag(dynamic_declarations, allow)],
[]

).

See also:

abolish_object/1, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

built-in predicate

create_protocol/3

Description

create_protocol(Identifier, Relations, Directives)

Creates a new, dynamic, protocol. This predicate is often used as a primitive to implement high-level protocol
creation methods.

Note that, when opting for runtime generated protocol identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic protocols in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_protocol(?protocol_identifier, @list(protocol_relation), @list(protocol_directive)) -␣
→˓one

Errors

Either Relations or Directives is a variable:
instantiation_error

Identifier is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

240 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, extends/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Examples

| ?- create_protocol(
logging,
[extends(monitoring)],
[public([log_file/1, log_on/0, log_off/0])]

).

See also:

abolish_protocol/1, current_protocol/1, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.4 Abolishing objects, categories and protocols

built-in predicate

abolish_category/1

Description

abolish_category(Category)

Abolishes a dynamic category. The category identifier can then be reused when creating a new category.

Modes and number of proofs

abolish_category(+category_identifier) - one

Errors

Category is a variable:
instantiation_error

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Category is an identifier of a static category:
permission_error(modify, static_category, Category)

Category does not exist:

2.4. Built-in predicates 241

The Logtalk Handbook, Release v3.61.0

existence_error(category, Category)

Examples

| ?- abolish_category(monitoring).

See also:

category_property/2, create_category/4, current_category/1 complements_object/2, extends_category/2-3,
imports_category/2-3

built-in predicate

abolish_object/1

Description

abolish_object(Object)

Abolishes a dynamic object. The object identifier can then be reused when creating a new object.

Modes and number of proofs

abolish_object(+object_identifier) - one

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Object is an identifier of a static object:
permission_error(modify, static_object, Object)

Object does not exist:
existence_error(object, Object)

Examples

| ?- abolish_object(list).

See also:

create_object/4, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

built-in predicate

242 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

abolish_protocol/1

Description

abolish_protocol(Protocol)

Abolishes a dynamic protocol. The protocol identifier can then be reused when creating a new protocol.

Modes and number of proofs

abolish_protocol(@protocol_identifier) - one

Errors

Protocol is a variable:
instantiation_error

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Protocol is an identifier of a static protocol:
permission_error(modify, static_protocol, Protocol)

Protocol does not exist:
existence_error(protocol, Protocol)

Examples

| ?- abolish_protocol(listp).

See also:

create_protocol/3, current_protocol/1, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.5 Objects, categories, and protocols relations

built-in predicate

extends_object/2-3

Description

extends_object(Prototype, Parent)
extends_object(Prototype, Parent, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

2.4. Built-in predicates 243

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

extends_object(?object_identifier, ?object_identifier) - zero_or_more
extends_object(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Prototype is neither a variable nor a valid object identifier:
type_error(object_identifier, Prototype)

Parent is neither a variable nor a valid object identifier:
type_error(object_identifier, Parent)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate objects derived from the state_space prototype:
| ?- extends_object(Object, state_space).

% enumerate objects publicly derived from the list prototype:
| ?- extends_object(Object, list, public).

See also:

current_object/1, instantiates_class/2-3, specializes_class/2-3

built-in predicate

extends_protocol/2-3

Description

extends_protocol(Protocol, ParentProtocol)
extends_protocol(Protocol, ParentProtocol, Scope)

Enumerates, by backtracking, all pairs of protocols such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

244 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

extends_protocol(?protocol_identifier, ?protocol_identifier) - zero_or_more
extends_protocol(?protocol_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

ParentProtocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, ParentProtocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the protocols extended by the listp protocol:
| ?- extends_protocol(listp, Protocol).

% enumerate protocols that privately extend the termp protocol:
| ?- extends_protocol(Protocol, termp, private).

See also:

current_protocol/1, implements_protocol/2-3, conforms_to_protocol/2-3

built-in predicate

extends_category/2-3

Description

extends_category(Category, ParentCategory)
extends_category(Category, ParentCategory, Scope)

Enumerates, by backtracking, all pairs of categories such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

2.4. Built-in predicates 245

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

extends_category(?category_identifier, ?category_identifier) - zero_or_more
extends_category(?category_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Category is neither a variable nor a valid protocol identifier:
type_error(category_identifier, Category)

ParentCategory is neither a variable nor a valid protocol identifier:
type_error(category_identifier, ParentCategory)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the categories extended by the derailleur category:
| ?- extends_category(derailleur, Category).

% enumerate categories that privately extend the basics category:
| ?- extends_category(Category, basics, private).

See also:

current_category/1, complements_object/2, imports_category/2-3

built-in predicate

implements_protocol/2-3

Description

implements_protocol(Object, Protocol)
implements_protocol(Category, Protocol)

implements_protocol(Object, Protocol, Scope)
implements_protocol(Category, Protocol, Scope)

Enumerates, by backtracking, all pairs of entities such that an object or a category implements a protocol.
The relation scope is represented by the atoms public, protected, and private. This predicate only returns
direct implementation relations; it does not implement a transitive closure.

246 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

implements_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

implements_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the list object implements the listp protocol:
| ?- implements_protocol(list, listp).

% check that the list object publicly implements the listp protocol:
| ?- implements_protocol(list, listp, public).

% enumerate only objects that implement the listp protocol:
| ?- current_object(Object), implements_protocol(Object, listp).

% enumerate only categories that implement the serialization protocol:
| ?- current_category(Category), implements_protocol(Category, serialization).

See also:

current_object/1, current_protocol/1, current_category/1, conforms_to_protocol/2-3

built-in predicate

2.4. Built-in predicates 247

The Logtalk Handbook, Release v3.61.0

conforms_to_protocol/2-3

Description

conforms_to_protocol(Object, Protocol)
conforms_to_protocol(Category, Protocol)

conforms_to_protocol(Object, Protocol, Scope)
conforms_to_protocol(Category, Protocol, Scope)

Enumerates, by backtracking, all pairs of entities such that an object or a category conforms to a protocol.
The relation scope is represented by the atoms public, protected, and private. This predicate implements
a transitive closure for the protocol implementation relation.

Modes and number of proofs

conforms_to_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

conforms_to_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate objects and categories that conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp).

% enumerate objects and categories that privately conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp, private).

% enumerate only objects that conform to the listp protocol:
| ?- current_object(Object), conforms_to_protocol(Object, listp).

(continues on next page)

248 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

% enumerate only categories that conform to the serialization protocol:
| ?- current_category(Category), conforms_to_protocol(Category, serialization).

See also:

current_object/1, current_protocol/1, current_category/1, implements_protocol/2-3

built-in predicate

complements_object/2

Description

complements_object(Category, Object)

Enumerates, by backtracking, all category–object pairs such that the category explicitly complements the
object.

Modes and number of proofs

complements_object(?category_identifier, ?object_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Prototype)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Parent)

Examples

% check that the logging category complements the employee object:
| ?- complements_object(logging, employee).

See also:

current_category/1, imports_category/2-3

built-in predicate

2.4. Built-in predicates 249

The Logtalk Handbook, Release v3.61.0

imports_category/2-3

Description

imports_category(Object, Category)

imports_category(Object, Category, Scope)

Enumerates, by backtracking, importation relations between objects and categories. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

imports_category(?object_identifier, ?category_identifier) - zero_or_more
imports_category(?object_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the xref_diagram object imports the diagram category:
| ?- imports_category(xref_diagram, diagram).

% enumerate the objects that privately import the diagram category:
| ?- imports_category(Object, diagram, private).

See also:

current_category/1, complements_object/2

built-in predicate

250 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

instantiates_class/2-3

Description

instantiates_class(Instance, Class)
instantiates_class(Instance, Class, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one instantiates the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

instantiates_class(?object_identifier, ?object_identifier) - zero_or_more
instantiates_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Instance is neither a variable nor a valid object identifier:
type_error(object_identifier, Instance)

Class is neither a variable nor a valid object identifier:
type_error(object_identifier, Class)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the water_jug is an instante of state_space:
| ?- instantiates_class(water_jug, state_space).

% enumerate the state_space instances where the
% instantiation relation is public:
| ?- instantiates_class(Space, state_space, public).

See also:

current_object/1, extends_object/2-3, specializes_class/2-3

built-in predicate

2.4. Built-in predicates 251

The Logtalk Handbook, Release v3.61.0

specializes_class/2-3

Description

specializes_class(Class, Superclass)
specializes_class(Class, Superclass, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one specializes the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

specializes_class(?object_identifier, ?object_identifier) - zero_or_more
specializes_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Class is neither a variable nor a valid object identifier:
type_error(object_identifier, Class)

Superclass is neither a variable nor a valid object identifier:
type_error(object_identifier, Superclass)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the state_space subclasses:
| ?- specializes_class(Subclass, state_space).

% enumerate the state_space subclasses where the
% specialization relation is public:
| ?- specializes_class(Subclass, state_space, public).

See also:

current_object/1, extends_object/2-3, instantiates_class/2-3

252 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.4.6 Event handling

built-in predicate

abolish_events/5

Description

abolish_events(Event, Object, Message, Sender, Monitor)

Abolishes all matching events. The two types of events are represented by the atoms before and after.
When the predicate is called with the first argument unbound, both types of events are abolished.

Modes and number of proofs

abolish_events(@term, @term, @term, @term, @term) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error(object_identifier, Monitor)

Examples

% abolish all events for messages sent to the "list"
% object being monitored by the "debugger" object:
| ?- abolish_events(_, list, _, _, debugger).

See also:

current_event/5, define_events/5, before/3, after/3

built-in predicate

2.4. Built-in predicates 253

The Logtalk Handbook, Release v3.61.0

current_event/5

Description

current_event(Event, Object, Message, Sender, Monitor)

Enumerates, by backtracking, all defined events. The two types of events are represented by the atoms
before and after.

Modes and number of proofs

current_event(?event, ?term, ?term, ?term, ?object_identifier) - zero_or_more

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error(object_identifier, Monitor)

Examples

% enumerate all events monitored by the "debugger" object:
| ?- current_event(Event, Object, Message, Sender, debugger).

See also:

abolish_events/5, define_events/5, before/3, after/3

built-in predicate

define_events/5

Description

define_events(Event, Object, Message, Sender, Monitor)

Defines a new set of events. The two types of events are represented by the atoms before and after. When
the predicate is called with the first argument unbound, both types of events are defined. The object Monitor
must define the event handler methods required by the Event argument.

254 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

define_events(@term, @term, @term, @term, +object_identifier) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

Monitor is a variable:
instantiation_error

Monitor is neither a variable nor a valid object identifier:
type_error(object_identifier, Monitor)

Monitor does not define the required before/3 method:
existence_error(procedure, before/3)

Monitor does not define the required after/3 method:
existence_error(procedure, after/3)

Examples

% define "debugger" as a monitor for member/2 messages
% sent to the "list" object:
| ?- define_events(_, list, member(_, _), _ , debugger).

See also:

abolish_events/5, current_event/5, before/3, after/3

2.4.7 Multi-threading

built-in predicate

threaded/1

Description

threaded(Goals)

threaded(Conjunction)
threaded(Disjunction)

2.4. Built-in predicates 255

The Logtalk Handbook, Release v3.61.0

Proves each goal in a conjunction (disjunction) of goals in its own thread. This predicate is deterministic
and opaque to cuts. The predicate argument is not flattened.

When the argument is a conjunction of goals, a call to this predicate blocks until either all goals succeed, one
of the goals fail, or one of the goals generate an exception; the failure of one of the goals or an exception on
the execution of one of the goals results in the termination of the remaining threads. The predicate call is
true iff all goals are true.

When the argument is a disjunction of goals, a call to this predicate blocks until either one of the goals
succeeds, all the goals fail, or one of the goals generate an exception; the success of one of the goals or
an exception on the execution of one of the goals results in the termination of the remaining threads. The
predicate call is true iff one of the goals is true.

When the predicate argument is neither a conjunction not a disjunction of goals, no threads are used. In this
case, the predicate call is equivalent to a once/1 predicate call.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded(+callable) - zero_or_one

Errors

Goals is a variable:
instantiation_error

A goal in Goals is a variable:
instantiation_error

Goals is neither a variable nor a callable term:
type_error(callable, Goals)

A goal Goal in Goals is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove a conjunction of goals, each one in its own thread:
threaded((Goal, Goals))

Prove a disjunction of goals, each one in its own thread:
threaded((Goal; Goals))

See also:

threaded_call/1-2, threaded_once/1-2, threaded_ignore/1, synchronized/1

built-in predicate

256 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

threaded_call/1-2

Description

threaded_call(Goal)
threaded_call(Goal, Tag)

Proves Goal asynchronously using a new thread. The argument can be a message sending goal. Calls
to this predicate always succeeds and return immediately. The results (success, failure, or exception) are
sent back to the message queue of the object containing the call (this) and can be retrieved by calling the
threaded_exit/1 predicate.

The threaded_call/2 variant returns a threaded call identifier tag that can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded as opaque terms; users shall not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_call(@callable) - one
threaded_call(@callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is not a variable:
type_error(variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_call(Goal)

Prove ::Message asynchronously in a new thread:
threaded_call(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_call(Object::Message)

See also:

threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded_peek/1-2, threaded_cancel/1, threaded/1,
synchronized/1

built-in predicate

2.4. Built-in predicates 257

The Logtalk Handbook, Release v3.61.0

threaded_once/1-2

Description

threaded_once(Goal)
threaded_once(Goal, Tag)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be
a message sending goal. This call always succeeds. The result (success, failure, or exception) is sent back to
the message queue of the object containing the call (this).

The threaded_once/2 variant returns a threaded call identifier tag that can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded as opaque terms; users shall not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_once(@callable) - one
threaded_once(@callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is not a variable:
type_error(variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_once(Goal)

Prove ::Message asynchronously in a new thread:
threaded_once(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_once(Object::Message)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_peek/1-2, threaded_cancel/1, threaded/1,
synchronized/1

built-in predicate

258 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

threaded_ignore/1

Description

threaded_ignore(Goal)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be a
message sending goal. This call always succeeds, independently of the result (success, failure, or exception),
which is simply discarded instead of being sent back to the message queue of the object containing the call
(this).

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_ignore(@callable) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_ignore(Goal)

Prove ::Message asynchronously in a new thread:
threaded_ignore(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_ignore(Object::Message)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_once/1-2, threaded_peek/1-2, threaded/1, synchronized/1

built-in predicate

2.4. Built-in predicates 259

The Logtalk Handbook, Release v3.61.0

threaded_exit/1-2

Description

threaded_exit(Goal)
threaded_exit(Goal, Tag)

Retrieves the result of proving Goal in a new thread. This predicate blocks execution until the reply is sent
to the this message queue by the thread executing the goal. When there is no thread proving the goal, the
predicate generates an exception. This predicate is non-deterministic, providing access to any alternative
solutions of its argument.

The argument of this predicate should be a variant of the argument of the corresponding threaded_call/1 or
threaded_once/1 call. When the predicate argument is subsumed by the threaded_call/1 or threaded_once/
1 call argument, the threaded_exit/1 call will succeed iff its argument is a solution of the (more general)
goal.

The threaded_exit/2 variant accepts a threaded call identifier tag generated by the calls to the
threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an opaque term; users shall
not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_exit(+callable) - zero_or_more
threaded_exit(+callable, +nonvar) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

No thread is running for proving Goal:
existence_error(goal_thread, Goal)

Tag is a variable:
instantiation_error

260 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To retrieve an asynchronous goal proof result:
threaded_exit(Goal)

To retrieve an asynchronous message to self result:
threaded_exit(::Goal)

To retrieve an asynchronous message result:
threaded_exit(Object::Goal)

See also:

threaded_call/1-2, threaded_ignore/1, threaded_once/1-2, threaded_peek/1-2, threaded_cancel/1, threaded/1

built-in predicate

threaded_peek/1-2

Description

threaded_peek(Goal)
threaded_peek(Goal, Tag)

Checks if the result of proving Goal in a new thread is already available. This call succeeds or fails without
blocking execution waiting for a reply to be available.

The argument of this predicate should be a variant of the argument of the corresponding threaded_call/1 or
threaded_once/1 call. When the predicate argument is subsumed by the threaded_call/1 or threaded_once/
1 call argument, the threaded_peek/1 call will succeed iff its argument unifies with an already available
solution of the (more general) goal.

The threaded_peek/2 variant accepts a threaded call identifier tag generated by the calls to the
threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an opaque term; users shall
not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_peek(+callable) - zero_or_one
threaded_peek(+callable, +nonvar) - zero_or_one

2.4. Built-in predicates 261

The Logtalk Handbook, Release v3.61.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is a variable:
instantiation_error

Examples

To check for an asynchronous goal proof result:
threaded_peek(Goal)

To check for an asynchronous message to self result:
threaded_peek(::Goal)

To check for an asynchronous message result:
threaded_peek(Object::Goal)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded_cancel/1, threaded/1

built-in predicate

threaded_cancel/1

Description

threaded_cancel(Tag)

Cancels a tagged threaded call. When there is no asynchronous call with the given tag, calling this predicate
succeeds assuming the asynchronous call have already terminated or canceled. The threaded call identifier
tag is generated by calls to the threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an
opaque term; users shall not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

262 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

threaded_cancel(+nonvar) - one

Errors

Tag is a variable:
instantiation_error

Examples

(none)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded/1

built-in predicate

threaded_wait/1

Description

threaded_wait(Term)
threaded_wait([Term| Terms])

Suspends the thread making the call until a notification is received that unifies with Term. The call must be
made within the same object (this) containing the calls to the threaded_notify/1 predicate that will eventually
send the notification. The argument may also be a list of notifications, [Term| Terms]. In this case, the thread
making the call will suspend until all notifications in the list are received.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_wait(?term) - one
threaded_wait(+list(term)) - one

2.4. Built-in predicates 263

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

% wait until the "data_available" notification is received:
..., threaded_wait(data_available), ...

See also:

threaded_notify/1

built-in predicate

threaded_notify/1

Description

threaded_notify(Term)
threaded_notify([Term| Terms])

Sends Term as a notification to any thread suspended waiting for it in order to proceed. The call must be
made within the same object (this) containing the calls to the threaded_wait/1 predicate waiting for the
notification. The argument may also be a list of notifications, [Term| Terms]. In this case, all notifications
in the list will be sent to any threads suspended waiting for them in order to proceed.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only threads flag is set to supported when that is the case.

Modes and number of proofs

threaded_notify(@term) - one
threaded_notify(@list(term)) - one

Errors

(none)

264 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

% send a "data_available" notification:
..., threaded_notify(data_available), ...

See also:

threaded_wait/1

2.4.8 Multi-threading engines

built-in predicate

threaded_engine_create/3

Description

threaded_engine_create(AnswerTemplate, Goal, Engine)

Creates a new engine for proving the given goal and defines an answer template for retrieving the goal
solution bindings. A message queue for passing arbitrary terms to the engine is also created. If the name
for the engine is not given, a unique name is generated and returned. Engine names shall be regarded as
opaque terms; users shall not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_create(@term, @callable, @nonvar) - one
threaded_engine_create(@term, @callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Engine is the name of an existing engine:
permission_error(create, engine, Engine)

2.4. Built-in predicates 265

The Logtalk Handbook, Release v3.61.0

Examples

% create a new engine for finding members of a list:
| ?- threaded_engine_create(X, member(X, [1,2,3]), worker_1).

See also:

threaded_engine_destroy/1, threaded_engine_self/1, threaded_engine/1, threaded_engine_next/2,
threaded_engine_next_reified/2

built-in predicate

threaded_engine_destroy/1

Description

threaded_engine_destroy(Engine)

Stops and destroys an engine.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_destroy(@nonvar) - one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% stop the worker_1 engine:
| ?- threaded_engine_destroy(worker_1).

% stop all engines:
| ?- forall(

threaded_engine(Engine),
threaded_engine_destroy(Engine)

).

266 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine/1

built-in predicate

threaded_engine/1

Description

threaded_engine(Engine)

Enumerates, by backtracking, all existing engines. Engine names shall be regarded as opaque terms; users
shall not rely on its type.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine(?nonvar) - zero_or_more

Errors

(none)

Examples

% check that the worker_1 engine exists:
| ?- threaded_engine(worker_1).

% write the names of all existing engines:
| ?- forall(

threaded_engine(Engine),
(writeq(Engine), nl)

).

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine_destroy/1

built-in predicate

2.4. Built-in predicates 267

The Logtalk Handbook, Release v3.61.0

threaded_engine_self/1

Description

threaded_engine_self(Engine)

Queries the name of engine calling the predicate.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_self(?nonvar) - zero_or_one

Errors

(none)

Examples

% find the name of the engine making the query:
..., threaded_engine_self(Engine), ...

% check if the the engine making the query is worker_1:
..., threaded_engine_self(worker_1), ...

See also:

threaded_engine_create/3, threaded_engine_destroy/1, threaded_engine/1

built-in predicate

threaded_engine_next/2

Description

threaded_engine_next(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the next answer. This predicate blocks
until an answer becomes available. The predicate fails when there are no more solutions to the engine goal.
If the engine goal throws an exception, calling this predicate will re-throw the exception and subsequent
calls will fail.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

268 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

threaded_engine_next(@nonvar, ?term) - zero_or_one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% get the next answer from the worker_1 engine:
| ?- threaded_engine_next(worker_1, Answer).

See also:

threaded_engine_create/3, threaded_engine_next_reified/2, threaded_engine_yield/1

built-in predicate

threaded_engine_next_reified/2

Description

threaded_engine_next_reified(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the next answer. This predicate always
succeeds and blocks until an answer becomes available. Answers are returned using the terms the(Answer),
no, and exception(Error).

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_next_reified(@nonvar, ?nonvar) - one

2.4. Built-in predicates 269

The Logtalk Handbook, Release v3.61.0

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% get the next reified answer from the worker_1 engine:
| ?- threaded_engine_next_reified(worker_1, Answer).

See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_yield/1

built-in predicate

threaded_engine_yield/1

Description

threaded_engine_yield(Answer)

Returns an answer independent of the solutions of the engine goal. Fails if not called from within an engine.
This predicate is usually used when the engine goal is a call to a recursive predicate processing terms from
the engine term queue.

This predicate blocks until the returned answer is consumed.

Note that this predicate should not be called as the last element of a conjunction resulting in an
engine goal solution as, in this case, an answer will always be returned. For example, instead of
(threaded_engine_yield(ready); member(X,[1,2,3])) use (X=ready; member(X,[1,2,3])).

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_yield(@term) - zero_or_one

270 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

% returns the atom "ready" as an engine answer:
..., threaded_engine_yield(ready), ...

See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_next_reified/2

built-in predicate

threaded_engine_post/2

Description

threaded_engine_post(Engine, Term)

Posts a term to the engine term queue.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_post(@nonvar, @term) - one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

2.4. Built-in predicates 271

The Logtalk Handbook, Release v3.61.0

Examples

% post the atom "ready" to the worker_1 engine queue:
| ?- threaded_engine_post(worker_1, ready).

See also:

threaded_engine_fetch/1

built-in predicate

threaded_engine_fetch/1

Description

threaded_engine_fetch(Term)

Fetches a term from the engine term queue. Blocks until a term is available. Fails if not called from within
an engine.

Note: This predicate requires a backend Prolog compiler providing compatible multi-threading primitives.
The value of the read-only engines flag is set to supported when that is the case.

Modes and number of proofs

threaded_engine_fetch(?term) - zero_or_one

Errors

(none)

Examples

% fetch a term from the engine term queue:
..., threaded_engine_fetch(Term), ...

See also:

threaded_engine_post/2

272 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.4.9 Compiling and loading source files

built-in predicate

logtalk_compile/1

Description

logtalk_compile(File)
logtalk_compile(Files)

Compiles to disk a source file or a list of source files using the default compiler flag values. The Logtalk
source file name extension (by default, .lgt) can be omitted. Source file paths can be absolute, relative to
the current directory, or use library notation. This predicate can also be used to compile Prolog source files
as Logtalk source code. When no recognized Logtalk or Prolog extension is specified, the compiler tries first
to append a Logtalk source file extension and then a Prolog source file extension. If that fails, the compiler
tries to use the file name as-is. The recognized Logtalk and Prolog file extensions are defined in the backend
adapter files.

Note: This predicate does not load into memory the compiled source file. If you want to both compile and
load a source file, use instead the logtalk_load/1 built-in predicate.

When this predicate is called from the top-level interpreter, relative source file paths are resolved using the
current working directory. When the calls are made from a source file, relative source file paths are resolved
using the source file directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no file with the compiled code is
written to disk.

Modes and number of proofs

logtalk_compile(@source_file_name) - zero_or_one
logtalk_compile(@list(source_file_name)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list does not exist:
existence_error(file, File)

2.4. Built-in predicates 273

The Logtalk Handbook, Release v3.61.0

Examples

% compile to disk the "set" source file in the
% current directory:
| ?- logtalk_compile(set).

% compile to disk the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile to disk the "listp" and "list" source
% files in the current directory:
| ?- logtalk_compile([listp, list]).

See also:

logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

built-in predicate

logtalk_compile/2

Description

logtalk_compile(File, Flags)
logtalk_compile(Files, Flags)

Compiles to disk a source file or a list of source files using a list of compiler flags. The Logtalk source file
name extension (by default, .lgt) can be omitted. Source file paths can be absolute, relative to the current
directory, or use library notation. This predicate can also be used to compile Prolog source files as Logtalk
source code. When no recognized Logtalk or Prolog extension is specified, the compiler tries first to append
a Logtalk source file extension and then a Prolog source file extension. If that fails, the compiler tries to
use the file name as-is. Compiler flags are represented as flag(value). For a description of the available
compiler flags, please see the Compiler flags section in the User Manual. The recognized Logtalk and Prolog
file extensions are defined in the backend adapter files.

Note: This predicate does not load into memory the compiled source file. If you want to both compile and
load a source file, use instead the logtalk_load/2 built-in predicate.

When this predicate is called from the top-level interpreter, relative source file paths are resolved using the
current working directory. When the calls are made from a source file, relative source file paths are resolved
by default using the source file directory (unless a relative_to flag is passed).

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no file with the compiled code is
written to disk.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first
argument. Notably, if you are compiling a loader file, the flags only apply to the loader file itself.

274 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

logtalk_compile(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_compile(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error(flag_value, Flag+Value)

Examples

% compile to disk the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_compile(list, []).

% compile to disk the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_compile(types(tree), [source_data(on)]).

% compile to disk the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_compile(file_system, [portability(silent)]).

See also:

logtalk_compile/1, logtalk_load/1, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

built-in predicate

2.4. Built-in predicates 275

The Logtalk Handbook, Release v3.61.0

logtalk_load/1

Description

logtalk_load(File)
logtalk_load(Files)

Compiles to disk and then loads to memory a source file or a list of source files using the default compiler flag
values. The Logtalk source file name extension (by default, .lgt) can be omitted. Source file paths can be
absolute, relative to the current directory, or use library notation. This predicate can also be used to compile
Prolog source files as Logtalk source code. When no recognized Logtalk or Prolog extension is specified, the
compiler tries first to append a Logtalk source file extension and then a Prolog source file extension. If that
fails, the compiler tries to use the file name as-is. The recognized Logtalk and Prolog file extensions are
defined in the backend adapter files.

When this predicate is called from the top-level interpreter, relative source file paths are resolved using the
current working directory. When the calls are made from a source file, relative source file paths are resolved
using the source file directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no contents of the source file are
loaded.

Depending on the backend Prolog compiler, the shortcuts {File} or {File1, File2, ...} may be used in
alternative. Check the adapter files for the availability of these shortcuts as they are not part of the language
(and thus should only be used at the top-level interpreter).

Modes and number of proofs

logtalk_load(@source_file_name) - zero_or_one
logtalk_load(@list(source_file_name)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

276 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

% compile and load the "set" source file in the
% current directory:
| ?- logtalk_load(set).

% compile and load the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile and load the "listp" and "list" source
% files in the current directory:
| ?- logtalk_load([listp, list]).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/2, logtalk_make/0, logtalk_make/1,
logtalk_library_path/2

built-in predicate

logtalk_load/2

Description

logtalk_load(File, Flags)
logtalk_load(Files, Flags)

Compiles to disk and then loads to memory a source file or a list of source files using a list of compiler flags.
The Logtalk source file name extension (by default, .lgt) can be omitted. Source file paths can be absolute,
relative to the current directory, or use library notation. Compiler flags are represented as flag(value). This
predicate can also be used to compile Prolog source files as Logtalk source code. When no recognized Logtalk
or Prolog extension is specified, the compiler tries first to append a Logtalk source file extension and then a
Prolog source file extension. If that fails, the compiler tries to use the file name as-is. For a description of the
available compiler flags, please see the Compiler flags section in the User Manual. The recognized Logtalk
and Prolog file extensions are defined in the backend adapter files. The recognized Logtalk and Prolog file
extensions are defined in the backend adapter files.

When this predicate is called from the top-level interpreter, relative source file paths are resolved using the
current working directory. When the calls are made from a source file, relative source file paths are resolved
by default using the source file directory (unless a relative_to flag is passed).

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no contents of the source file are
loaded.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first
argument and not to any files that those files may load or compile. Notably, if you are loading a loader
file, the flags only apply to the loader file itself and not to the files loaded by it.

2.4. Built-in predicates 277

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

logtalk_load(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_load(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error(flag_value, Flag+Value)

Examples

% compile and load the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_load(list, []).

% compile and load the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_load(types(tree)).

% compile and load the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_load(file_system, [portability(silent)]).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_make/0, logtalk_make/1,
logtalk_library_path/2

built-in predicate

278 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

logtalk_make/0

Description

logtalk_make

Reloads all Logtalk source files that have been modified since the time they are last loaded. Only source
files loaded using the logtalk_load/1 and logtalk_load/2 predicates are reloaded. Non-modified files will
also be reloaded when there is a change to the compilation mode (i.e. when the files were loaded without
explicit debug or optimize flags and the default values of these flags changed after loading; no check is made,
however, for other implicit compiler flags that may have changed since loading). When an included file is
modified, this predicate reloads its main file (i.e. the file that contains the include/1 directive).

Depending on the backend Prolog compiler, the shortcut {*} may be used in alternative. Check the adapter
files for the availability of the shortcut as it is not part of the language.

Warning: Only use the {*} shortcut at the top-level interpreter and never in source files.

This predicate can be extended by the user by defining clauses for the logtalk_make_target_action/1 multifile
and dynamic hook predicate using the argument all. The additional user defined actions are run after the
default one.

Modes and number of proofs

logtalk_make - one

Errors

(none)

Examples

% reload all files modified since last loaded:
| ?- logtalk_make.

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/1,
logtalk_make_target_action/1

built-in predicate

2.4. Built-in predicates 279

The Logtalk Handbook, Release v3.61.0

logtalk_make/1

Description

logtalk_make(Target)

Runs a make target. Prints a warning message and fails when the target is not valid.

Allows reloading all Logtalk source files that have been modified since last loaded when called with the target
all, deleting all intermediate files generated by the compilation of Logtalk source files when called with the
target clean, checking for code issues when called with the target check, listing of circular dependencies
between pairs or trios of objects when called with the target circular, generating documentation when
called with the target documentation, and deleting the dynamic binding caches with the target caches.

There are also three variants of the all target: debug, normal, and optimal. These targets change the
compilation mode (by changing the default value of the debug and optimize flags) and reload all affected
files (i.e. all files loaded without an explicit debug/1 or optimize/1 compiler option).

When using the all target, only source files loaded using the logtalk_load/1 and logtalk_load/2 predicates
are reloaded. Non-modified files will also be reloaded when there is a change to the compilation mode (i.e.
when the files were loaded without explicit debug or optimize flags and the default values of these flags
changed after loading; no check is made, however, for other implicit compiler flags that may have changed
since loading). When an included file is modified, this target reloads its main file (i.e. the file that contains
the include/1 directive).

When using the check or circular targets, be sure to compile your source files with the source_data flag
turned on for complete and detailed reports.

The check target scans for missing entities (objects, protocols, categories, and modules), missing entity pred-
icates, and duplicated library aliases. Predicates for messages sent to objects that implement the forwarding
built-in protocol are not reported. While this usually avoids only false positives, it may also result in failure
to report true missing predicates in some cases.

When using the circular target, be prepared for a lengthy computation time for applications with a large
combined number of objects and message calls. Only mutual and triangular dependencies are checked due
to the computational cost. Circular dependencies occur when an object sends a message to a second object
that, in turn, sends a message to the first object. These circular dependencies are often a consequence of
lack of separation of concerns. But, when they cannot be fixed, the only practical consequence is a small
performance cost as some of the messages would be forced to use dynamic binding.

The documentation target requires the doclet tool and a single doclet object to be loaded. See the doclet
tool documentation for more details.

Depending on the backend Prolog compiler, the following top-level shortcuts are usually defined:

• {*} - logtalk_make(all)

• {!} - logtalk_make(clean)

• {?} - logtalk_make(check)

• {@} - logtalk_make(circular)

• {#} - logtalk_make(documentation)

• {$} - logtalk_make(caches)

• {+d} - logtalk_make(debug)

• {+n} - logtalk_make(normal)

• {+o} - logtalk_make(optimal)

280 Chapter 2. Reference Manual

../../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.61.0

Check the adapter files for the availability of these shortcuts as they are not part of the language.

Warning: Only use the shortcuts at the top-level interpreter and never in source files.

The target actions can be extended by defining clauses for the multifile and dynamic hook predicate
logtalk_make_target_action(Target) where Target is one of the targets listed above. The additional user
defined actions are run after the default ones.

Modes and number of proofs

logtalk_make(+atom) - zero_or_one

Errors

(none)

Examples

% reload loaded source files in debug mode:
| ?- logtalk_make(debug).

% check for code issues in the loaded source files:
| ?- logtalk_make(check).

% delete all intermediate files generated by
% the compilation of Logtalk source files:
| ?- logtalk_make(clean).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/0,
logtalk_make_target_action/1

built-in predicate

logtalk_make_target_action/1

Description

logtalk_make_target_action(Target)

Multifile and dynamic hook predicate that allows defining user actions for the logtalk_make/1 targets. The
user defined actions are run after the default ones using a failure driven loop. This loop does not catch any
exceptions thrown when calling the user-defined actions.

2.4. Built-in predicates 281

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

logtalk_make_target_action(+atom) - zero_or_more

Errors

(none)

Examples

% integrate the dead_code_scanner tool with logtalk_make/1

:- multifile(logtalk_make_target_action/1).
:- dynamic(logtalk_make_target_action/1).

logtalk_make_target_action(check) :-
dead_code_scanner::all.

See also:

logtalk_make/1, logtalk_make/0

built-in predicate

logtalk_library_path/2

Description

logtalk_library_path(Library, Path)

Dynamic and multifile user-defined predicate, allowing the declaration of aliases to library paths. Library
aliases may also be used on the second argument (using the notation alias(path)). Paths must always end
with the path directory separator character ('/').

Warning: Library aliases should be unique. The logtalk_make/1 built-in predicate can be used to detect
and report duplicated library aliases using the check target.

Relative paths (e.g. '../' or './') should only be used within the alias(path)) notation so that library paths
can always be expanded to absolute paths independently of the (usually unpredictable) current directory at
the time the logtalk_library_path/2 predicate is called.

When working with a relocatable application, the actual application installation directory can be retrieved
by calling the logtalk_load_context/2 predicate with the directory key and using the returned value to
define the logtalk_library_path/2 predicate. On a settings file file or a loader file file, simply use an
initialization/1 directive to wrap the call to the logtalk_load_context/2 predicate and the assert of the
logtalk_library_path/2 fact.

This predicate may be used to override the default scratch directory by defining the library alias
scratch_directory in a backend Prolog initialization file (assumed to be loaded prior to Logtalk loading).
This allows e.g. Logtalk to be installed in a read-only directory by setting this alias to the operating-system

282 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

directory for temporary files. It also allows several Logtalk instances to run concurrently without conflict by
using a unique scratch directory per instance (e.g. using a process ID or a UUID generator).

This predicate may be used to override the default location used by the packs tool to store registries and
packs by defining the logtalk_packs library alias in settings file or in a backend Prolog initialization file
(assumed to be loaded prior to Logtalk loading).

The logtalk built-in object provides an expand_library_path/2 predicate that can be used to expand library
aliases and files expressed using library notation.

Modes and number of proofs

logtalk_library_path(?atom, -atom) - zero_or_more
logtalk_library_path(?atom, -compound) - zero_or_more

Errors

(none)

Examples

:- initialization((
logtalk_load_context(directory, Directory),
assertz(logtalk_library_path(my_application_root, Directory))

)).

| ?- logtalk_library_path(viewpoints, Path).

Path = examples('viewpoints/')
yes

| ?- logtalk_library_path(Library, Path).

Library = home,
Path = '$HOME/' ;

Library = logtalk_home,
Path = '$LOGTALKHOME/' ;

Library = logtalk_user
Path = '$LOGTALKUSER/' ;

Library = examples
Path = logtalk_user('examples/') ;

Library = library
Path = logtalk_user('library/') ;

Library = viewpoints

(continues on next page)

2.4. Built-in predicates 283

../../../docs/logtalk_0.html#logtalk-0-expand-library-path-2

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

Path = examples('viewpoints/')
yes

| ?- logtalk::expand_library_path(viewpoints, Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/'.
yes

| ?- logtalk::expand_library_path(viewpoints('loader.lgt'), Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/loader.lgt'.
yes

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2

built-in predicate

logtalk_load_context/2

Description

logtalk_load_context(Key, Value)

Provides access to the Logtalk compilation/loading context. The following keys are currently supported:

• entity_identifier - identifier of the entity being compiled if any

• entity_prefix - internal prefix for the entity compiled code

• entity_type - returns the value module when compiling a module as an object

• source - full path of the source file being compiled

• file - the actual file being compiled, different from source only when processing an include/1 direc-
tive

• basename - source file basename

• directory - source file directory

• stream - input stream being used to read source file terms

• target - the full path of the intermediate Prolog file

• flags - the list of the explicit flags used for the compilation of the source file

• term - the source file term being compiled

• term_position - the position of the term being compiled (StartLine-EndLine)

• variables - the variables of the term being compiled ([Variable1, ...])

• variable_names - the variable names of the term being compiled ([Name1=Variable1, ...])

• singletons - the singleton variables of the term being compiled ([Name1=Variable1, ...])

284 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

This predicate is usually called by the term_expansion/2 and goal_expansion/2 methods. It can also be called
directly from initialization/1 directives in a source file. Note that the entity keys are only available when
compiling an entity term or from an object initialization/1 directive.

Warning: The term_position key is only supported in backend Prolog compilers that provide access to
the start and end lines of a read term. When such support is not available, the value -1 is returned for
both the start and the end lines.

Currently, any variables in the values of the term, variables, variable_names, and singletons
keys are not shared with, respectively, the term and goal arguments of the term_expansion/2 and
goal_expansion/2 methods.

Using the variables, variable_names, and singletons keys may require calling the standard built-in
predicate term_variables/2 on the term read and unifying the term variables with the variables in the
names list. This, however, may rise portability issues with Prolog compilers that don’t return the vari-
ables in the same order for the term_variables/2 predicate and the option variable_names/1 of the
read_term/3 built-in predicate, which is used by the Logtalk compiler to read source files.

Modes and number of proofs

logtalk_load_context(?atom, -nonvar) - zero_or_more

Errors

(none)

Examples

% expand source file terms only if they are entity terms
term_expansion(Term, ExpandedTerms) :-

logtalk_load_context(entity_identifier, _),
....

% define a library alias based on the source directory
:- initialization((

logtalk_load_context(directory, Directory),
assertz(logtalk_library_path(my_app, Directory))

)).

See also:

term_expansion/2, goal_expansion/2, initialization/1

2.4. Built-in predicates 285

The Logtalk Handbook, Release v3.61.0

2.4.10 Flags

built-in predicate

current_logtalk_flag/2

Description

current_logtalk_flag(Flag, Value)

Enumerates, by backtracking, the current Logtalk flag values. For a description of the predefined compiler
flags, please see the Compiler flags section in the User Manual.

Modes and number of proofs

current_logtalk_flag(?atom, ?atom) - zero_or_more

Errors

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Flag is an atom but an invalid flag:
domain_error(flag, Value)

Examples

% get the current value of the source_data flag:
| ?- current_logtalk_flag(source_data, Value).

See also:

create_logtalk_flag/3, set_logtalk_flag/2

built-in predicate

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets global, default, flag values. For local flag scope, use the corresponding set_logtalk_flag/2 directive. To
set a global flag value when compiling and loading a source file, wrap the calls to this built-in predicate with
an initialization/1 directive. For a description of the predefined compiler flags, please see the Compiler flags
section in the User Manual.

286 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

set_logtalk_flag(+atom, +nonvar) - one

Errors

Flag is a variable:
instantiation_error

Value is a variable:
instantiation_error

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Flag is an atom but an invalid flag:
domain_error(flag, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a read-only flag:
permission_error(modify, flag, Flag)

Examples

% turn off globally and by default the compiler
% unknown entities warnings:
| ?- set_logtalk_flag(unknown_entities, silent).

See also:

create_logtalk_flag/3, current_logtalk_flag/2

built-in predicate

create_logtalk_flag/3

Description

create_logtalk_flag(Flag, Value, Options)

Creates a new Logtalk flag and sets its default value. User-defined flags can be queried and set in the
same way as predefined flags by using, respectively, the current_logtalk_flag/2 and set_logtalk_flag/2 built-in
predicates. For a description of the predefined compiler flags, please see the Compiler flags section in the
User Manual.

This predicate is based on the specification of the SWI-Prolog create_prolog_flag/3 built-in predicate
and supports the same options: access(Access), where Access can be either read_write (the default) or
read_only; keep(Keep), where Keep can be either false (the default) or true, for deciding if an existing
definition of the flag should be kept or replaced by the new one; and type(Type) for specifying the type of
the flag, which can be boolean, atom, integer, float, or term (which only restricts the flag value to ground
terms). When the type/1 option is not specified, the type of the flag is inferred from its initial value.

2.4. Built-in predicates 287

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

create_logtalk_flag(+atom, +ground, +list(ground)) - one

Errors

Flag is a variable:
instantiation_error

Value is not a ground term:
instantiation_error

Options is not a ground term:
instantiation_error

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Options is neither a variable nor a list:
type_error(atom, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a system-defined flag:
permission_error(modify, flag, Flag)

An element Option of the list Options is not a valid option
domain_error(flag_option,Option)

The list Options contains a type(Type) option and Value is not of type Type

type_error(Type, Value)

Examples

% create a new boolean flag with default value set to false:
| ?- create_logtalk_flag(pretty_print_blobs, false, []).

See also:

current_logtalk_flag/2, set_logtalk_flag/2

288 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

2.4.11 Linter

built-in predicate

logtalk_linter_hook/7

Description

logtalk_linter_hook(Goal, Flag, File, Lines, Type, Entity, Warning)

Multifile user-defined predicate, supporting the definition of custom linter warnings. Experimental. The
Goal argument can be a message sending goal, Object::Message, a call to a Prolog built-in predicate, or
a call to a module predicate, Module:Predicate. The Flag argument must be a supported linter flag. The
Warning argument must be a valid core message term.

Modes and number of proofs

logtalk_linter_hook(@callable, +atom, +atom, +pair(integer), +atom, @object_identifier, --
→˓callable) - zero_or_more

Errors

(none)

Examples

:- multifile(user::logtalk_linter_hook/7).
% warn about using list::append/3 to construct a list from an head and a tail
user::logtalk_linter_hook(

list::append(L1,L2,L), suspicious_calls,
File, Lines, Type, Entity,
suspicious_call(File, Lines, Type, Entity, list::append(L1,L2,L), [L=[Head|L2]])

) :-
nonvar(L1),
L1 = [Head].

2.5 Built-in methods

2.5.1 Logic and control

built-in method

2.5. Built-in methods 289

The Logtalk Handbook, Release v3.61.0

!/0

Description

!

Always succeeds with the side-effect of discarding choice-points. See also the ISO Prolog standard definition.
This built-in method is declared as a public method and can be used as a message to an object.

Modes and number of proofs

! - one

Errors

(none)

Examples

(none)

See also:

true/0, fail/0, false/0, repeat/0

built-in method

true/0

Description

true

Always succeeds. See also the ISO Prolog standard definition. This built-in method is declared as a public
method and can be used as a message to an object.

Modes and number of proofs

true - one

290 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

(none)

See also:

!/0, fail/0, false/0, repeat/0

built-in method

fail/0

Description

fail

Always fails. See also the ISO Prolog standard definition. This built-in method is declared as a public method
and can be used as a message to an object.

Modes and number of proofs

fail - one

Errors

(none)

Examples

(none)

See also:

!/0, true/0, false/0, repeat/0

built-in method

2.5. Built-in methods 291

The Logtalk Handbook, Release v3.61.0

false/0

Description

false

Always fails. See also the ISO Prolog standard definition. This built-in method is declared as a public method
and can be used as a message to an object.

Modes and number of proofs

false - one

Errors

(none)

Examples

(none)

See also:

!/0, true/0, fail/0, repeat/0

built-in method

repeat/0

Description

repeat

Always succeeds when called and when backtracking into its call with an infinite number of choice-points.
See also the ISO Prolog standard definition. This built-in method is declared as a public method and can be
used as a message to an object.

Modes and number of proofs

repeat - one_or_more

292 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

(none)

See also:

!/0, true/0, fail/0, false/0

2.5.2 Execution context

built-in method

context/1

Description

context(Context)

Returns the execution context for a predicate clause using the term logtalk(Head,ExecutionContext) where
Head is the head of the clause containing the call. This private predicate is mainly used for providing a default
error context when type-checking predicate arguments. The ExecutionContext term should be regarded
as an opaque term, which can be decoded using the logtalk::execution_context/7 predicate. Calls to this
predicate are inlined at compilation time.

Modes and number of proofs

context(--callable) - one

Errors

Context is not a variable:
type_error(var, Context)

Examples

foo(A, N) :-
% type-check arguments
context(Context),
type::check(atom, A, Context),
type::check(integer, N, Context),
% arguments are fine; go ahead
... .

2.5. Built-in methods 293

../../../docs/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.61.0

See also:

parameter/2, self/1, sender/1, this/1

built-in method

parameter/2

Description

parameter(Number, Term)

Used in parametric objects (and parametric categories), this private method provides runtime access to the
parameter values of the entity that contains the predicate clause whose body is being executed by using
the argument number in the entity identifier. This predicate is implemented as a unification between its
second argument and the corresponding implicit execution-context argument in the predicate clause making
the call. This unification occurs at the clause head when the second argument is not instantiated (the most
common case). When the second argument is instantiated, the unification must be delayed to runtime and
thus occurs at the clause body.

Entity parameters can also be accessed using parameter variables, which use the syntax _VariableName_. The
compiler recognizes occurrences of these variables in directives and clauses. Parameter variables allows us
to abstract parameter positions thus simplifying code maintenance.

Modes and number of proofs

parameter(+integer, ?term) - zero_or_one

Errors

Number is a variable:
instantiation_error

Number is neither a variable nor an integer value:
type_error(integer, Number)

Number is smaller than one or greater than the parametric entity identifier arity:
domain_error(out_of_range, Number)

Entity identifier is not a compound term:
type_error(compound, Entity)

Examples

:- object(box(_Color, _Weight)).

...

% this clause is translated into
% a fact upon compilation
color(Color) :-

(continues on next page)

294 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

parameter(1, Color).

% upon compilation, the >/2 call will be
% the single goal in the clause body
heavy :-

parameter(2, Weight),
Weight > 10.

...

The same example using parameter variables:

:- object(box(_Color_, _Weight_)).

...

color(_Color_).

heavy :-
Weight > 10.

...

See also:

context/1, self/1, sender/1, this/1

built-in method

self/1

Description

self(Self)

Returns the object that has received the message under processing. This private method is translated to a
unification between its argument and the corresponding implicit context argument in the predicate clause
making the call. This unification occurs at the clause head when the argument is not instantiated (the most
common case).

Modes and number of proofs

self(?object_identifier) - zero_or_one

2.5. Built-in methods 295

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

% upon compilation, the write/1 call will be
% the first goal on the clause body
test :-

self(Self),
write('executing a method in behalf of '),
writeq(Self), nl.

See also:

context/1, parameter/2, sender/1, this/1

built-in method

sender/1

Description

sender(Sender)

Returns the object that has sent the message under processing. This private method is translated into a
unification between its argument and the corresponding implicit context argument in the predicate clause
making the call. This unification occurs at the clause head when the argument is not instantiated (the most
common case).

Modes and number of proofs

sender(?object_identifier) - zero_or_one

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-

sender(Sender),
write('executing a method to answer a message sent by '),
writeq(Sender), nl.

296 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

See also:

context/1, parameter/2, self/1, this/1

built-in method

this/1

Description

this(This)

Unifies its argument with the identifier of the object for which the predicate clause whose body is being
executed is defined (or the object importing the category that contains the predicate clause). This private
method is implemented as a unification between its argument and the corresponding implicit execution-
context argument in the predicate clause making the call. This unification occurs at the clause head when
the argument is not instantiated (the most common case). This method is useful for avoiding hard-coding
references to an object identifier or for retrieving all object parameters with a single call when using para-
metric objects.

Modes and number of proofs

this(?object_identifier) - zero_or_one

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-

this(This),
write('Using a predicate clause contained in '),
writeq(This), nl.

See also:

context/1, parameter/2, self/1, sender/1

2.5. Built-in methods 297

The Logtalk Handbook, Release v3.61.0

2.5.3 Reflection

built-in method

current_op/3

Description

current_op(Priority, Specifier, Operator)

Enumerates, by backtracking, the visible operators declared for an object. Operators not declared using a
scope directive are not enumerated.

Modes and number of proofs

current_op(?operator_priority, ?operator_specifier, ?atom) - zero_or_more

Errors

Priority is neither a variable nor an integer:
type_error(integer, Priority)

Priority is an integer but not a valid operator priority:
domain_error(operator_priority, Priority)

Specifier is neither a variable nor an atom:
type_error(atom, Specifier)

Specifier is an atom but not a valid operator specifier:
domain_error(operator_specifier, Specifier)

Operator is neither a variable nor an atom:
type_error(atom, Operator)

Examples

To enumerate, by backtracking, the local operators or the operators visible in this:
current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public and protected operators visible in self :
::current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public operators visible for an explicit object:
Object::current_op(Priority, Specifier, Operator)

See also:

current_predicate/1, predicate_property/2, op/3

built-in method

298 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

current_predicate/1

Description

current_predicate(Predicate)

Enumerates, by backtracking, visible, user-defined, object predicates. Built-in predicates and predicates not
declared using a scope directive are not enumerated.

This predicate also succeeds for any predicates listed in uses/2 and use_module/2 directives.

When Predicate is bound at compile time to a (:)/2 term, this predicate enumerates module predicates
(assuming that the backend Prolog compiler supports modules).

Modes and number of proofs

current_predicate(?predicate_indicator) - zero_or_more

Errors

Predicate is neither a variable nor a valid predicate indicator:
type_error(predicate_indicator, Predicate)

Predicate is a Name/Arity term but Functor is neither a variable nor an atom:
type_error(atom, Name)

Predicate is a Name/Arity term but Arity is neither a variable nor an integer:
type_error(integer, Arity)

Predicate is a Name/Arity term but Arity is a negative integer:
domain_error(not_less_than_zero, Arity)

Examples

To enumerate, by backtracking, the locally visible user predicates or the user predicates visible in this:
current_predicate(Predicate)

To enumerate, by backtracking, the public and protected user predicates visible in self :
::current_predicate(Predicate)

To enumerate, by backtracking, the public user predicates visible for an explicit object:
Object::current_predicate(Predicate)

An example of enumerating locally visible object predicates. These include predicates listed using uses/2 and
use_module/2 directives:

:- object(foo).

:- uses(bar, [
baz/1, quux/2

]).

(continues on next page)

2.5. Built-in methods 299

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- public(pred/1).
pred(X) :-

current_predicate(X).

:- end_object.

| ?- foo::pred(X).
X = pred/1 ;
X = baz/1 ;
X = quux/2 ;
no

See also:

current_op/3, predicate_property/2, uses/2, use_module/2

built-in method

predicate_property/2

Description

predicate_property(Predicate, Property)

Enumerates, by backtracking, the properties of a visible object predicate. Properties for predicates not
declared using a scope directive are not enumerated. The valid predicate properties are listed in the language
grammar section on predicate properties and described in the User Manual section on predicate properties.

When Predicate is listed in a uses/2 or use_module/2 directive, properties are enumerated for the referenced
object or module predicate.

When Predicate is bound at compile time to a (:)/2 term, this predicate enumerates properties for module
predicates (assuming that the backend Prolog compiler supports modules).

Modes and number of proofs

predicate_property(+callable, ?predicate_property) - zero_or_more

Errors

Predicate is a variable:
instantiation_error

Predicate is neither a variable nor a callable term:
type_error(callable, Predicate)

Property is neither a variable nor a valid predicate property:
domain_error(predicate_property, Property)

300 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To enumerate, by backtracking, the properties of a locally visible user predicate or a user predicate visible
in this:

predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public or protected predicate visible in self :
::predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public predicate visible in an explicit object:
Object::predicate_property(Predicate, Property)

An example of enumerating properties for locally visible object predicates. These include predicates listed
using uses/2 and use_module/2 directives:

:- object(foo).

:- uses(bar, [
baz/1, quux/2

]).

:- public(pred/1).
pred_prop(Pred, Prop) :-

predicate_property(Pred, Prop).

:- end_object.

| ?- foo::pred(baz(_), Prop).
Prop = logtalk ;
Prop = scope(public) ;
Prop = public ;
Prop = declared_in(bar) ;
...

See also:

current_op/3, current_predicate/1, uses/2, use_module/2

2.5.4 Database

built-in method

abolish/1

Description

abolish(Predicate)

Abolishes a runtime declared object dynamic predicate or an object local dynamic predicate. Only predicates
that are dynamically declared at runtime (using a call to the asserta/1 or assertz/1 built-in methods) can be
abolished.

2.5. Built-in methods 301

The Logtalk Handbook, Release v3.61.0

When the predicate indicator is declared in a uses/2 or use_module/2 directive, the predicate is abolished in
the referenced object or module. When the backend Prolog compiler supports a module system, the predicate
argument can also be module qualified.

Modes and number of proofs

abolish(@predicate_indicator) - one

Errors

Predicate is a variable:
instantiation_error

Functor is a variable:
instantiation_error

Arity is a variable:
instantiation_error

Predicate is neither a variable nor a valid predicate indicator:
type_error(predicate_indicator, Predicate)

Functor is neither a variable nor an atom:
type_error(atom, Functor)

Arity is neither a variable nor an integer:
type_error(integer, Arity)

Predicate is statically declared:
permission_error(modify, predicate_declaration, Name/Arity)

Predicate is a private predicate:
permission_error(modify, private_predicate, Name/Arity)

Predicate is a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

Predicate is a static predicate:
permission_error(modify, static_predicate, Name/Arity)

Predicate is not declared for the object receiving the message:
existence_error(predicate_declaration, Name/Arity)

Examples

To abolish a local dynamic predicate or a dynamic predicate in this:
abolish(Predicate)

To abolish a public or protected dynamic predicate in self :
::abolish(Predicate)

To abolish a public dynamic predicate in an explicit object:
Object::abolish(Predicate)

See also:

asserta/1, assertz/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

302 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

built-in method

asserta/1

Description

asserta(Head)
asserta((Head:-Body))

Asserts a clause as the first one for an object dynamic predicate. If the predicate is not previously declared
(using a scope directive), then a dynamic predicate declaration is added to the object (assuming that we are
asserting locally or that the dynamic_declarations compiler flag was set to allow when the object was created
or compiled).

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this. This allows easy initialization of dynamically created objects
when writing constructors.

Modes and number of proofs

asserta(+clause) - one

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body cannot be converted to a goal:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was
created or compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

2.5. Built-in methods 303

The Logtalk Handbook, Release v3.61.0

Examples

To assert a clause as the first one for a local dynamic predicate or a dynamic predicate in this:
asserta(Clause)

To assert a clause as the first one for any public or protected dynamic predicate in self :
::asserta(Clause)

To assert a clause as the first one for any public dynamic predicate in an explicit object:
Object::asserta(Clause)

An example of asserting clauses in this and in self from a category:

:- category(attributes,
implements(attributes_protocol)).

:- private(attr_/1).
:- dynamic(attr_/1).

set_in_this(A, X) :-
asserta(attr_(A, X)).

set_in_self(A, X) :-
::asserta(attr_(A, X)).

...

An example of asserting clauses into another object with the predicates listed using a uses/2 directive (similar
when using a use_module/2 directive):

:- object(reasoner(_KnowledgeBase_)).

:- uses(_KnowledgeBase_, [
foo/1, bar/1

]).

baz(X) :-
% compiled as _KnowledgeBase_::assertz(foo(X))
asserta(foo(X)).

foobar(Name, Argument) :-
Clause =.. [Name, Argument],
% runtime resolved to _KnowledgeBase_::assertz(Clause)
% when Name is either foo or bar
asserta(Clause).

...

See also:

abolish/1, assertz/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

built-in method

304 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

assertz/1

Description

assertz(Head)
assertz((Head:-Body))

Asserts a clause as the last one for a dynamic predicate. If the predicate is not previously declared (using a
scope directive), then a dynamic predicate declaration is added to the object (assuming that we are asserting
locally or that the dynamic_declarations compiler flag was set to allow when the object was created or
compiled).

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this. This allows easy initialization of dynamically created objects
when writing constructors.

Modes and number of proofs

assertz(+clause) - one

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body cannot be converted to a goal:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was
created/compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

2.5. Built-in methods 305

The Logtalk Handbook, Release v3.61.0

Examples

To assert a clause as the last one for a local dynamic predicate or a dynamic predicate in this:
assertz(Clause)

To assert a clause as the last one for any public or protected dynamic predicate in self :
::assertz(Clause)

To assert a clause as the last one for any public dynamic predicate in an explicit object:
Object::assertz(Clause)

An example of asserting clauses in this and in self from a category:

:- category(attributes,
implements(attributes_protocol)).

:- private(attr_/1).
:- dynamic(attr_/1).

set_in_this(A, X) :-
assertz(attr_(A, X)).

set_in_self(A, X) :-
::assertz(attr_(A, X)).

...

An example of asserting clauses into another object with the predicates listed using a uses/2 directive (similar
when using a use_module/2 directive):

:- object(reasoner(_KnowledgeBase_)).

:- uses(_KnowledgeBase_, [
foo/1, bar/1

]).

baz(X) :-
% compiled as _KnowledgeBase_::assertz(foo(X))
assertz(foo(X)).

foobar(Name, Argument) :-
Clause =.. [Name, Argument],
% runtime resolved to _KnowledgeBase_::assertz(Clause)
% when Name is either foo or bar
assertz(Clause).

...

See also:

abolish/1, asserta/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

built-in method

306 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

clause/2

Description

clause(Head, Body)

Enumerates, by backtracking, the clauses of a dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the predicate enu-
merates the clauses in the referenced object or module. When the backend Prolog compiler supports a
module system, the head argument can also be module qualified.

This method may be used to enumerate clauses for predicates that are not declared dynamic for dynamic
objects provided that the predicates are declared in this.

Modes and number of proofs

clause(+callable, ?body) - zero_or_more

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body is a neither a variable nor a callable term:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(access, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(access, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(access, static_predicate, Name/Arity)

Head is not a declared predicate:
existence_error(predicate_declaration, Name/Arity)

Examples

To retrieve a matching clause of a local dynamic predicate or a dynamic predicate in this:
clause(Head, Body)

To retrieve a matching clause of a public or protected dynamic predicate in self :
::clause(Head, Body)

To retrieve a matching clause of a public dynamic predicate in an explicit object:
Object::clause(Head, Body)

2.5. Built-in methods 307

The Logtalk Handbook, Release v3.61.0

See also:

abolish/1, asserta/1, assertz/1, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

built-in method

retract/1

Description

retract(Head)
retract((Head:-Body))

Retracts a clause for an object dynamic predicate. On backtracking, the predicate retracts the next matching
clause.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is retracted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this.

Modes and number of proofs

retract(+clause) - zero_or_more

Errors

Head is a variable:
instantiation_error

Head is neither a variable nor a callable term:
type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

308 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To retract a matching clause of a dynamic predicate in this:
retract(Clause)

To retract a matching clause of a public or protected dynamic predicate in self :
::retract(Clause)

To retract a matching clause of a public dynamic predicate in an explicit object:
Object::retract(Clause)

See also:

abolish/1, asserta/1, assertz/1, clause/2, retractall/1, dynamic/0, dynamic/1, uses/2, use_module/2

built-in method

retractall/1

Description

retractall(Head)

Retracts all clauses with a matching head for an object dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clauses are
retracted in the referenced object or module. When the backend Prolog compiler supports a module system,
the predicate argument can also be module qualified.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this.

Modes and number of proofs

retractall(@callable) - one

Errors

Head is a variable:
instantiation_error

Head is neither a variable nor a callable term:
type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

2.5. Built-in methods 309

The Logtalk Handbook, Release v3.61.0

Examples

To retract all clauses with a matching head of a dynamic predicate in this:
retractall(Head)

To retract all clauses with a matching head of a public or protected dynamic predicate in self :
::retractall(Head)

To retract all clauses with a matching head of a public dynamic predicate in an explicit object:
Object::retractall(Head)

See also:

abolish/1, asserta/1, assertz/1, clause/2, retract/1, dynamic/0, dynamic/1, uses/2, use_module/2

2.5.5 Meta-calls

built-in method

call/1-N

Description

call(Goal)
call(Closure, Arg1, ...)

Calls a goal constructed by appending additional arguments to a closure. The upper limit for N depends on
the upper limit for the arity of a compound term of the backend Prolog compiler. This built-in meta-predicate
is declared as a private method and thus cannot be used as a message to an object. The Closure argument
can also be a lambda expression or a Logtalk control construct. When using a backend Prolog compiler
supporting a module system, calls in the format call(Module:Closure, Arg1, ...) may also be used.

This meta-predicate is opaque to cuts in its arguments.

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

310 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

Examples

Call a goal, constructed by appending additional arguments to a closure, in the context of the object or
category containing the call:

call(Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to self :
call(::Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to an explicit
object:

call(Object::Closure, Arg1, Arg2, ...)

See also:

ignore/1, once/1, (\+)/1

built-in method

ignore/1

Description

ignore(Goal)

This predicate succeeds whether its argument succeeds or fails and it is not re-executable. This built-in
meta-predicate is declared as a private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

ignore(+callable) - one

2.5. Built-in methods 311

The Logtalk Handbook, Release v3.61.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Call a goal and succeeding even if it fails:
ignore(Goal)

To send a message succeeding even if it fails to self :
ignore(::Goal)

To send a message succeeding even if it fails to an explicit object:
ignore(Object::Goal)

See also:

call/1-N, once/1, (\+)/1

built-in method

once/1

Description

once(Goal)

This predicate behaves as call(Goal) but it is not re-executable. This built-in meta-predicate is declared as
a private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

once(+callable) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

312 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

Call a goal deterministically in the context of the object or category containing the call:
once(Goal)

To send a goal as a non-backtracable message to self :
once(::Goal)

To send a goal as a non-backtracable message to an explicit object:
once(Object::Goal)

See also:

call/1-N, ignore/1, (\+)/1

built-in method

(\+)/1

Description

\+ Goal

Not-provable meta-predicate. True iff call(Goal) is false. This built-in meta-predicate is declared as a
private method and thus cannot be used as a message to an object.

Modes and number of proofs

\+ +callable - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Not-provable goal in the context of the object or category containing the call:
\+ Goal

Not-provable goal sent as a message to self :
\+ ::Goal

Not-provable goal sent as a message to an explicit object:
\+ Object::Goal

2.5. Built-in methods 313

The Logtalk Handbook, Release v3.61.0

See also:

call/1-N, ignore/1, once/1

2.5.6 Error handling

built-in method

catch/3

Description

catch(Goal, Catcher, Recovery)

Catches exceptions thrown by a goal. See also the ISO Prolog standard definition. This built-in meta-
predicate is declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

catch(?callable, ?term, ?callable) - zero_or_more

Errors

(none)

Examples

(none)

See also:

throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2, ex-
istence_error/2, permission_error/3, evaluation_error/1, representation_error/1 resource_error/1, syn-
tax_error/1, system_error/0

built-in method

throw/1

Description

throw(Exception)

Throws an exception. See also the ISO Prolog standard definition. This built-in method is declared private
and thus cannot be used as a message to an object.

314 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

throw(+nonvar) - error

Errors

Exception is a variable:
instantiation_error

Exception does not unify with the second argument of any call of catch/3:
system_error

Examples

(none)

See also:

catch/3, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2, ex-
istence_error/2, permission_error/3, evaluation_error/1, representation_error/1 resource_error/1, syn-
tax_error/1, system_error/0

built-in method

instantiation_error/0

Description

instantiation_error

Throws an instantiation error. Used when an argument or one of its sub-arguments is a variable but a
non-variable term is required. For example, trying to open a file with a variable for the input/output mode.

This built-in method is declared private and thus cannot be used as a message to an object. Calling this
predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(instantiation_error, Context)).

This allows the user to generate errors in the same format used by the runtime.

2.5. Built-in methods 315

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

instantiation_error - error

Errors

When called:
instantiation_error

Examples

...,
var(Handler),
instantiation_error.

See also:

catch/3, throw/1, context/1, uninstantiation_error/1, type_error/2, domain_error/2, existence_error/2,
permission_error/3, representation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, sys-
tem_error/0

built-in method

uninstantiation_error/1

Description

uninstantiation_error(Culprit)

Throws an uninstantiation error. Used when an argument or one of its sub-arguments is bound but a variable
is required. For example, trying to open a file with a stream argument bound.

This built-in method is declared private and thus cannot be used as a message to an object. Calling this
predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(uninstantiation_error(Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

316 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

uninstantiation_error(@nonvar) - error

Errors

When called:
uninstantiation_error(Culprit)

Examples

...,
var(Handler),
uninstantiation_error(my_stream).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

built-in method

type_error/2

Description

type_error(Type, Culprit)

Throws a type error. Used when the type of an argument is incorrect. For example, trying ot use a non-
callable term as a message. This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(type_error(Type,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Type include all the types defined by the type library object and by other libraries such as
os, expecteds, and optionals. The value of Culprit is the argument or one of its sub-terms that caused the
error.

2.5. Built-in methods 317

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

type_error(@nonvar, @term) - error

Errors

When called:
type_error(Type, Culprit)

Examples

...,
\+ atom(Name),
type_error(atom, Name).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, domain_error/2, exis-
tence_error/2, permission_error/3, representation_error/1 evaluation_error/1, resource_error/1, syn-
tax_error/1, system_error/0,

built-in method

domain_error/2

Description

domain_error(Domain, Culprit)

Throws a domain error. Used when an argument is of the correct type but outside the valid domain. For
example, trying to use an atom as an operator specifier that is not a valid specifier. This built-in method is
declared private and thus cannot be used as a message to an object. Calling this predicate is equivalent to
the following sequence of goals:

...,
context(Context),
throw(error(domain_error(Domain,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Domain include:

• character_code_list

• close_option

• flag_option

• flag_value

• compiler_flag

• flag

318 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

• prolog_flag

• io_mode

• non_empty_list

• not_less_than_zero

• operator_priority

• operator_specifier

• read_option

• source_sink

• stream

• stream_option

• stream_or_alias

• stream_position

• stream_property

• write_option

• character_code_list

• text_encoding

• directive

• object_directive

• protocol_directive

• category_directive

• object_relation

• protocol_relation

• category_relation

• object_property

• protocol_property

• category_property

• predicate_property

• meta_argument_specifier

• meta_directive_template

• closure

• allocation

• redefinition

• message_sending_goal

• class

• prototype

• scope

2.5. Built-in methods 319

The Logtalk Handbook, Release v3.61.0

• boolean

The value of Culprit is the argument or one of its sub-terms that caused the error.

Modes and number of proofs

domain_error(+atom, @nonvar) - error

Errors

When called:
domain_error(Domain, Culprit)

Examples

...,
atom(Color),
\+ color(Color),
domain_error(color, Color).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, existence_error/2,
permission_error/3, representation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, sys-
tem_error/0

built-in method

existence_error/2

Description

existence_error(Thing, Culprit)

Throws an existence error. Used when the subject of an operation does not exist. This built-in method is
declared private and thus cannot be used as a message to an object. Calling this predicate is equivalent to
the following sequence of goals:

...,
context(Context),
throw(error(existence_error(Thing,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Thing include:

• predicate_declaration

• procedure

• source_sink

320 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

• stream

• object

• protocol

• category

• module

• library

• file

• goal_thread

The value of Culprit is the argument or one of its sub-terms that caused the error.

Modes and number of proofs

existence_error(@nonvar, @nonvar) - error

Errors

When called:
existence_error(Thing, Culprit)

Examples

...,
\+ current_object(payroll),
existence_error(object, payroll).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
evaluation_error/1, permission_error/3, representation_error/1, resource_error/1, syntax_error/1, sys-
tem_error/0

built-in method

permission_error/3

Description

permission_error(Operation, Permission, Culprit)

Throws an permission error. Used when an operation is not allowed. For example, sending a message for a
predicate that is not within the scope of the sender. This built-in method is declared private and thus cannot
be used as a message to an object. Calling this predicate is equivalent to the following sequence of goals:

2.5. Built-in methods 321

The Logtalk Handbook, Release v3.61.0

...,
context(Context),
throw(error(permission_error(Operation,Permission,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Operation include:

• access

• create

• modify

• open

• input

• output

• reposition

• repeat

Possible values for Permission include:

• predicate_declaration

• protected_predicate

• private_predicate

• static_predicate

• database

• object

• static_object

• static_protocol

• static_category

• entity_relation

• operator

• flag

• engine

• binary_stream

• text_stream

• source_sink

• stream

• past_end_of_stream

The value of Culprit is the argument or one of its sub-terms that caused the error.

322 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

permission_error(@nonvar, @nonvar, @nonvar) - error

Errors

When called:
permission_error(Operation, Permission, Culprit)

Examples

...,
\+ writable(File),
permission_error(modify, file, File).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, representation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, sys-
tem_error/0

built-in method

representation_error/1

Description

representation_error(Flag)

Throws a representation error. Used when some representation limit is exceeded. For example, trying to
construct a compound term that exceeds the maximum arity supported by the backend Prolog system. This
built-in method is declared private and thus cannot be used as a message to an object. Calling this predicate
is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(representation_error(Flag), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Flag include:

• character

• character_code

• in_character_code

• max_arity

• max_integer

• min_integer

2.5. Built-in methods 323

The Logtalk Handbook, Release v3.61.0

• lambda_parameters

• entity_prefix

Modes and number of proofs

representation_error(+atom) - error

Errors

When called:
representation_error(Flag)

Examples

...,
Code > 127,
representation_error(character_code).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, permission_error/3, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

built-in method

evaluation_error/1

Description

evaluation_error(Error)

Throws an evaluation error. Used when evaluating an arithmetic expression generates an exception. This
built-in method is declared private and thus cannot be used as a message to an object. Calling this predicate
is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(evaluation_error(Error), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Error include:

• float_overflow

• int_overflow

• undefined

• underflow

• zero_divisor

324 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

evaluation_error(@nonvar) - error

Errors

When called:
evaluation_error(Exception)

Examples

...,
Divisor =:= 0,
evaluation_error(zero_divisor).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, permission_error/3, representation_error/1, resource_error/1, syntax_error/1, sys-
tem_error/0

built-in method

resource_error/1

Description

resource_error(Resource)

Throws a resource error. Used when a required resource (e.g. memory or disk space) to complete execution
is not available. This built-in method is declared private and thus cannot be used as a message to an object.
Calling this predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(resource_error(Resource), Context)).

This allows the user to generate errors in the same format used by the runtime.

Possible values for Resource include:

• threads

• coinduction

• soft_cut_support

2.5. Built-in methods 325

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

resource_error(@nonvar) - error

Errors

When called:
resource_error(Resource)

Examples

...,
empty(Tank),
resource_error(gas).

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, permission_error/3, representation_error/1, syntax_error/1, system_error/0

built-in method

syntax_error/1

Description

syntax_error(Description)

Throws a syntax error. Used when the sequence of characters being read are not syntactically valid. This
built-in method is declared private and thus cannot be used as a message to an object. Calling this predicate
is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(syntax_error(Description), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

syntax_error(@nonvar) - error

326 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

When called:
syntax_error(Description)

Examples

(none)

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, permission_error/3, representation_error/1, system_error/0 resource_error/1

built-in method

system_error/0

Description

system_error

Throws a system error. Used when runtime execution can no longer proceed. For example, an exception
is thrown without an active catcher. This built-in method is declared private and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(system_error, Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

system_error - error

Errors

When called:
system_error

2.5. Built-in methods 327

The Logtalk Handbook, Release v3.61.0

Examples

(none)

See also:

catch/3, throw/1, context/1, instantiation_error/0, uninstantiation_error/1, type_error/2, domain_error/2,
existence_error/2, permission_error/3, representation_error/1 evaluation_error/1, resource_error/1, syn-
tax_error/1,

2.5.7 All solutions

built-in method

bagof/3

Description

bagof(Template, Goal, List)

Collects a bag of solutions for the goal for each set of instantiations of the free variables in the goal. The
order of the elements in the bag follows the order of the goal solutions. The free variables in the goal are the
variables that occur in the goal but not in the template. Free variables can be ignored, however, by using the
^/2 existential qualifier. For example, if T is term containing all the free variables that we want to ignore, we
can write T^Goal. Note that the term T can be written as V1^V2^....

When there are free variables, this method is re-executable on backtracking. This method fails when there
are no solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

bagof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

328 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To find a bag of solutions in the context of the object or category containing the call:
bagof(Template, Goal, List)

To find a bag of solutions of sending a message to self :
bagof(Template, ::Message, List)

To find a bag of solutions of sending a message to an explicit object:
bagof(Template, Object::Message, List)

See also:

findall/3, findall/4, forall/2, setof/3

built-in method

findall/3

Description

findall(Template, Goal, List)

Collects a list of solutions for the goal. The order of the elements in the list follows the order of the goal
solutions. It succeeds returning an empty list when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

findall(?term, +callable, ?list) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

2.5. Built-in methods 329

The Logtalk Handbook, Release v3.61.0

Examples

To find all solutions in the context of the object or category containing the call:
findall(Template, Goal, List)

To find all solutions of sending a message to self :
findall(Template, ::Message, List)

To find all solutions of sending a message to an explicit object:
findall(Template, Object::Message, List)

See also:

bagof/3, findall/4, forall/2, setof/3

built-in method

findall/4

Description

findall(Template, Goal, List, Tail)

Variant of the findall/3 method that allows passing the tail of the results list. It succeeds returning the tail
argument when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

findall(?term, +callable, ?list, ?term) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

330 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To find all solutions in the context of the object or category containing the call:
findall(Template, Goal, List, Tail)

To find all solutions of sending a message to self :
findall(Template, ::Message, List, Tail)

To find all solutions of sending a message to an explicit object:
findall(Template, Object::Message, List, Tail)

See also:

bagof/3, findall/3, forall/2, setof/3

built-in method

forall/2

Description

forall(Generator, Test)

For all solutions of Generator, Test is true. This meta-predicate implements a generate-and-test loop using a
definition equivalent to \+ (Generator, \+ Test).

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

forall(@callable, @callable) - zero_or_one

Errors

Either Generator or Test is a variable:
instantiation_error

Generator is neither a variable nor a callable term:
type_error(callable, Generator)

Test is neither a variable nor a callable term:
type_error(callable, Test)

2.5. Built-in methods 331

The Logtalk Handbook, Release v3.61.0

Examples

To call both goals in the context of the object or category containing the call:
forall(Generator, Test)

To send both goals as messages to self :
forall(::Generator, ::Test)

To send both goals as messages to explicit objects:
forall(Object1::Generator, Object2::Test)

See also:

bagof/3, findall/3, findall/4, setof/3

built-in method

setof/3

Description

setof(Template, Goal, List)

Collects a set of solutions for the goal for each set of instantiations of the free variables in the goal. The
solutions are sorted using standard term order. The free variables in the goal are the variables that occur
in the goal but not in the template. Free variables can be ignored, however, by using the ^/2 existential
qualifier. For example, if T is term containing all the free variables that we want to ignore, we can write
T^Goal. Note that the term T can be written as V1^V2^....

When there are free variables, this method is re-executable on backtracking. This method fails when there
are no solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

setof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

332 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

To find a set of solutions in the context of the object or category containing the call:
setof(Template, Goal, List)

To find a set of solutions of sending a message to self :
setof(Template, ::Message, List)

To find a set of solutions of sending a message to an explicit object:
setof(Template, Object::Message, List)

See also:

bagof/3, findall/3, findall/4, forall/2

2.5.8 Event handling

built-in method

before/3

Description

before(Object, Message, Sender)

User-defined method for handling before events. This method is declared in the monitoring built-in protocol
as a public predicate and automatically called by the runtime for messages sent using the (::)/2 control
construct from within objects compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private
implementation of the monitoring protocol.

Modes and number of proofs

before(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

2.5. Built-in methods 333

../../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

Examples

:- object(...,
implements(monitoring),
...).

% write a log message when a message is sent:
before(Object, Message, Sender) :-

writeq(Object), write('::'), writeq(Message),
write(' from '), writeq(Sender), nl.

See also:

after/3, abolish_events/5, current_event/5, define_events/5

built-in method

after/3

Description

after(Object, Message, Sender)

User-defined method for handling after events. This method is declared in the monitoring built-in protocol
as a public predicate and automatically called by the runtime for messages sent using the (::)/2 control
construct from within objects compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private
implementation of the monitoring protocol.

Modes and number of proofs

after(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:- object(...,
implements(monitoring),
...).

% write a log message when a message is successful:
after(Object, Message, Sender) :-

writeq(Object), write('::'), writeq(Message),
write(' from '), writeq(Sender), nl.

334 Chapter 2. Reference Manual

../../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

See also:

before/3, abolish_events/5, current_event/5, define_events/5

2.5.9 Message forwarding

built-in method

forward/1

Description

forward(Message)

User-defined method for forwarding unknown messages sent to an object (using the (::)/2 control construct),
automatically called by the runtime when defined. This method is declared in the forwarding built-in pro-
tocol as a public predicate. Note that you can make its scope protected or private by using, respectively,
protected or private implementation of the forwarding protocol.

Modes and number of proofs

forward(+callable) - zero_or_more

Errors

(none)

Examples

:- object(proxy,
implements(forwarding),
...).

forward(Message) :-
% delegate unknown messages to the "real" object
[real::Message].

See also:

[]/1

2.5. Built-in methods 335

../../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.61.0

2.5.10 Definite clause grammar rules

built-in method

call//1-N

Description

call(Closure)
call(Closure, Arg1, ...)
call(Object::Closure, Arg1, ...)
call(::Closure, Arg1, ...)
call(^^Closure, Arg1, ...)
...

This non-terminal takes a closure and is processed by appending the input list of tokens and the list of
remaining tokens to the arguments of the closure. This built-in non-terminal is interpreted as a private
non-terminal and thus cannot be used as a message to an object.

Using this non-terminal is recommended when calling a predicate whose last two arguments are the input
list of tokens and the list of remaining tokens to avoid hard-coding assumptions about how grammar rules
are compiled into clauses. Note that the compiler ensures zero overhead when using this non-terminal with
a bound argument at compile time.

When using a backend Prolog compiler supporting a module system, calls in the format call(Module:Closure)
may also be used. By using as argument a lambda expression, this built-in non-terminal can provide controlled
access to the input list of tokens and to the list of the remaining tokens processed by the grammar rule
containing the call.

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

Errors

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

336 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

Calls a goal, constructed by appending the tokens difference list to the closure, in in the context of the
object or category containing the call:

call(Closure)

To make a super call, constructed by appending the tokens difference list to the closure:
call(^^Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to self :
call(::Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to an
explicit object:

call(Object::Closure)

See also:

eos//0, phrase//1, phrase/2, phrase/3

built-in method

eos//0

Description

eos

This non-terminal matches the end-of-input. It is implemented by checking that the implicit difference list
unifies with []-[].

Modes and number of proofs

eos - zero_or_one

Errors

(none)

Examples

abc --> a, b, c, eos.

See also:

call//1-N, phrase//1, phrase/2, phrase/3

built-in method

2.5. Built-in methods 337

The Logtalk Handbook, Release v3.61.0

phrase//1

Description

phrase(GrammarRuleBody)

This non-terminal takes a grammar rule body and parses it using the implicit difference list of tokens. A
common use is to wrap what otherwise would be a naked meta-variable in a grammar rule body.

Modes and number of proofs

phrase(+callable) - zero_or_more

Errors

GrammarRuleBody is a variable:
instantiation_error

GrammarRuleBody is neither a variable nor a callable term:
type_error(callable, GrammarRuleBody)

Examples

(none)

See also:

call//1-N, phrase/2, phrase/3

built-in method

phrase/2

Description

phrase(GrammarRuleBody, Input)
phrase(::GrammarRuleBody, Input)
phrase(Object::GrammarRuleBody, Input)

True when the GrammarRuleBody grammar rule body can be applied to the Input list of tokens. In the
most common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This built-in method is
declared private and thus cannot be used as a message to an object. When using a backend Prolog compiler
supporting a module system, calls in the format phrase(Module:GrammarRuleBody, Input) may also be used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated
at compile time, the method call is compiled in order to eliminate the implicit overheads of converting the
grammar rule body into a goal and meta-calling it. For performance reasons, the second argument is only
type-checked at compile time.

338 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

phrase(+callable, ?list) - zero_or_more

Errors

GrammarRuleBody is a variable:
instantiation_error

GrammarRuleBody is neither a variable nor a callable term:
type_error(callable, GrammarRuleBody)

Examples

To parse a list of tokens using a local non-terminal:
phrase(NonTerminal, Input)

To parse a list of tokens using a non-terminal within the scope of self :
phrase(::NonTerminal, Input)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase(Object::NonTerminal, Input)

See also:

call//1-N, phrase//1, phrase/3

built-in method

phrase/3

Description

phrase(GrammarRuleBody, Input, Rest)
phrase(::GrammarRuleBody, Input, Rest)
phrase(Object::GrammarRuleBody, Input, Rest)

True when the GrammarRuleBody grammar rule body can be applied to the Input-Rest difference list of
tokens. In the most common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This
built-in method is declared private and thus cannot be used as a message to an object. When using a backend
Prolog compiler supporting a module system, calls in the format phrase(Module:GrammarRuleBody, Input,
Rest) may also be used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated
at compile time, the method call is compiled in order to eliminate the implicit overheads of converting the
grammar rule body into a goal and meta-calling it. For performance reasons, the second and third arguments
are only type-checked at compile time.

2.5. Built-in methods 339

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

phrase(+callable, ?list, ?list) - zero_or_more

Errors

GrammarRuleBody is a variable:
instantiation_error

GrammarRuleBody is neither a variable nor a callable term:
type_error(callable, GrammarRuleBody)

Examples

To parse a list of tokens using a local non-terminal:
phrase(NonTerminal, Input, Rest)

To parse a list of tokens using a non-terminal within the scope of self :
phrase(::NonTerminal, Input, Rest)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase(Object::NonTerminal, Input, Rest)

See also:

call//1-N, phrase/2, phrase/3

2.5.11 Term and goal expansion

built-in method

expand_term/2

Description

expand_term(Term, Expansion)

Expands a term. The most common use is to expand a grammar rule into a clause. Users may override the
default Logtalk grammar rule translator by defining clauses for the term_expansion/2 hook predicate.

The expansion works as follows: if the first argument is a variable, then it is unified with the second argu-
ment; if the first argument is not a variable and there are local or inherited clauses for the term_expansion/2
hook predicate within scope, then this predicate is called to provide an expansion that is then unified with
the second argument; if the term_expansion/2 predicate is not used and the first argument is a compound
term with functor -->/2 then the default Logtalk grammar rule translator is used, with the resulting clause
being unified with the second argument; when the translator is not used, the two arguments are unified.
The expand_term/2 predicate may return a single term or a list of terms.

This built-in method may be used to expand a grammar rule into a clause for use with the built-in database
methods.

340 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Automatic term expansion is only performed at compile time (to expand terms read from a source file) when
using a hook object. This predicate can be used by the user to manually perform term expansion at runtime
(for example, to convert a grammar rule into a clause).

Modes and number of proofs

expand_term(?term, ?term) - one

Errors

(none)

Examples

(none)

See also:

expand_goal/2, goal_expansion/2, term_expansion/2

built-in method

term_expansion/2

Description

term_expansion(Term, Expansion)

Defines an expansion for a term. This predicate, when defined and within scope, is automatically called
by the expand_term/2 method. When that is not the case, the expand_term/2 method only uses the default
expansions. Use of this predicate by the expand_term/2 method may be restricted by changing its default
public scope.

The term_expansion/2 predicate may return a list of terms. Returning an empty list effectively suppresses
the term.

Term expansion may be also be applied when compiling source files by defining the object providing access
to the term_expansion/2 clauses as a hook object. Clauses for the term_expansion/2 predicate defined within
an object or a category are never used in the compilation of the object or the category itself. Moreover, in
this context, terms wrapped using the {}/1 compiler bypass control construct are not expanded and any
expanded term wrapped in this control construct will not be further expanded.

Objects and categories implementing this predicate should declare that they implement the expanding pro-
tocol if no ancestor already declares it. This protocol implementation relation can be declared as either
protected or private to restrict the scope of this predicate.

2.5. Built-in methods 341

../../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

term_expansion(+nonvar, -nonvar) - zero_or_one
term_expansion(+nonvar, -list(nonvar)) - zero_or_one

Errors

(none)

Examples

term_expansion((:- license(default)), (:- license(gplv3))).
term_expansion(data(Millimeters), data(Meters)) :- Meters is Millimeters / 1000.

See also:

expand_goal/2, expand_term/2, goal_expansion/2, logtalk_load_context/2

built-in method

expand_goal/2

Description

expand_goal(Goal, ExpandedGoal)

Expands a goal. The expansion works as follows: if the first argument is a variable, then it is unified with
the second argument; if the first argument is not a variable and there are local or inherited clauses for the
goal_expansion/2 hook predicate within scope, then this predicate is recursively called until a fixed-point
is reached to provide an expansion that is then unified with the second argument; if the goal_expansion/2
predicate is not within scope, the two arguments are unified.

Automatic goal expansion is only performed at compile time (to expand the body of clauses and meta-
directives read from a source file) when using hook objects. This predicate can be used by the user to
manually perform goal expansion at runtime (for example, before asserting a clause).

Modes and number of proofs

expand_goal(?term, ?term) - one

342 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

(none)

See also:

expand_term/2, goal_expansion/2, term_expansion/2

built-in method

goal_expansion/2

Description

goal_expansion(Goal, ExpandedGoal)

Defines an expansion for a goal. The first argument is the goal to be expanded. The expanded goal is
returned in the second argument. This predicate is called recursively on the expanded goal until a fixed point
is reached. Thus, care must be taken to avoid compilation loops. This predicate, when defined and within
scope, is automatically called by the expand_goal/2 method. Use of this predicate by the expand_goal/2
method may be restricted by changing its default public scope.

Goal expansion may be also be applied when compiling source files by defining the object providing access to
the goal_expansion/2 clauses as a hook object. Clauses for the goal_expansion/2 predicate defined within
an object or a category are never used in the compilation of the object or the category itself. Moreover,
in this context, goals wrapped using the {}/1 compiler bypass control construct are not expanded and any
expanded goal wrapped in this control construct will not be further expanded.

Objects and categories implementing this predicate should declare that they implement the expanding built-
in protocol if no ancestor already declares it. This protocol implementation relation can be declared as either
protected or private to restrict the scope of this predicate.

Modes and number of proofs

goal_expansion(+callable, -callable) - zero_or_one

Errors

(none)

2.5. Built-in methods 343

../../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

Examples

goal_expansion(write(Term), (write_term(Term, []), nl)).
goal_expansion(read(Term), (write('Input: '), {read(Term)})).

See also:

expand_goal/2, expand_term/2, term_expansion/2, logtalk_load_context/2

2.5.12 Coinduction hooks

built-in method

coinductive_success_hook/1-2

Description

coinductive_success_hook(Head, Hypothesis)
coinductive_success_hook(Head)

User-defined hook predicates that are automatically called in case of coinductive success when proving a
query for a coinductive predicates. The hook predicates are called with the head of the coinductive predicate
on coinductive success and, optionally, with the hypothesis used that to reach coinductive success.

When both hook predicates are defined, the coinductive_success_hook/1 clauses are only used if no
coinductive_success_hook/2 clause applies. The compiler ensures zero performance penalties when defin-
ing coinductive predicates without a corresponding definition for the coinductive success hook predicates.

The compiler assumes that these hook predicates are defined as static predicates in order to optimize their
use.

Modes and number of proofs

coinductive_success_hook(+callable, +callable) - zero_or_one
coinductive_success_hook(+callable) - zero_or_one

Errors

(none)

344 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Examples

% Are there "occurrences" of arg1 in arg2?
:- public(member/2).
:- coinductive(member/2).

member(X, [X| _]).
member(X, [_| T]) :-

member(X, T).

% Are there infinitely many "occurrences" of arg1 in arg2?
:- public(comember/2).
:- coinductive(comember/2).
comember(X, [_| T]) :-

comember(X, T).

coinductive_success_hook(member(_, _)) :-
fail.

coinductive_success_hook(comember(X, L)) :-
member(X, L).

See also:

coinductive/1

2.5.13 Message printing

built-in method

print_message/3

Description

print_message(Kind, Component, Term)

Built-in method for printing a message represented by a term, which is converted to the message text using
the logtalk::message_tokens(Term, Component) hook non-terminal. This method is declared in the logtalk
built-in object as a public predicate. The line prefix and the output stream used for each Kind-Component
pair can be found using the logtalk::message_prefix_stream(Kind, Component, Prefix, Stream) hook predicate.

This predicate starts by converting the message term to a list of tokens and by calling the
logtalk::message_hook(Message, Kind, Component, Tokens) hook predicate. If this predicate succeeds, the
print_message/3 predicate assumes that the message have been successfully printed.

By default: messages of kind debug or debug(_) are only printed when the debug flag is turned on; messages
of kind banner, comment, or comment(_) are only printed when the report flag is set to on; messages of kind
warning and warning(_) are not printed when the report flag is set to off; messages of kind silent and
silent() are not printed (but can be intercepted).

2.5. Built-in methods 345

../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

print_message(+nonvar, +nonvar, +nonvar) - one

Errors

(none)

Examples

..., logtalk::print_message(information, core, redefining_entity(object, foo)), ...

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

built-in method

message_tokens//2

Description

message_tokens(Message, Component)

User-defined non-terminal hook used to rewrite a message term into a list of tokens and declared in the
logtalk built-in object as a public, multifile, and dynamic non-terminal. The list of tokens can be printed
by calling the print_message_tokens/3 method. This non-terminal hook is automatically called by the
print_message/3 method.

Modes and number of proofs

message_tokens(+nonvar, +nonvar) - zero_or_more

Errors

(none)

346 Chapter 2. Reference Manual

../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Examples

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

See also:

message_hook/4, message_prefix_stream/4, print_message/3, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

built-in method

message_hook/4

Description

message_hook(Message, Kind, Component, Tokens)

User-defined hook method for intercepting printing of a message, declared in the logtalk built-in object as a
public, multifile, and dynamic predicate. This hook method is automatically called by the print_message/3
method. When the call succeeds, the print_message/3 method assumes that the message have been success-
fully printed.

Modes and number of proofs

message_hook(@nonvar, @nonvar, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

% print silent messages instead of discarding them as default
logtalk::message_hook(_, silent, core, Tokens) :-

logtalk::message_prefix_stream(silent, core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

See also:

message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

built-in method

2.5. Built-in methods 347

../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

message_prefix_stream/4

Description

message_prefix_stream(Kind, Component, Prefix, Stream)

User-defined hook method for specifying the default prefix and stream for printing a message for a given
kind and component. This method is declared in the logtalk built-in object as a public, multifile, and dynamic
predicate.

Modes and number of proofs

message_prefix_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

logtalk::message_prefix_stream(information, core, '% ', user_output).

See also:

message_hook/4, message_tokens//2, print_message/3, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

built-in method

print_message_tokens/3

Description

print_message_tokens(Stream, Prefix, Tokens)

Built-in method for printing a list of message tokens, declared in the logtalk built-in object as a public predi-
cate. This method is automatically called by the print_message/3 method (assuming that the message was not
intercepted by a message_hook/4 definition) and calls the user-defined hook predicate print_message_token/4
for each token. When a call to this hook predicate succeeds, the print_message_tokens/3 predicate assumes
that the token have been printed. When the call fails, the print_message_tokens/3 predicate uses a default
printing procedure for the token.

348 Chapter 2. Reference Manual

../../../docs/logtalk_0.html#logtalk-0
../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Modes and number of proofs

print_message_tokens(@stream_or_alias, +atom, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

...,
logtalk::print_message_tokens(user_error, '% ', ['Redefining ~w ~q'-[object,foo], nl]),
...

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

built-in method

print_message_token/4

Description

print_message_token(Stream, Prefix, Token, Tokens)

User-defined hook method for printing a message token, declared in the logtalk built-in object as a public,
multifile, and dynamic predicate. It allows the user to intercept the printing of a message token. This hook
method is automatically called by the print_message_tokens/3 built-in method for each token.

Modes and number of proofs

print_message_token(@stream_or_alias, @atom, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

2.5. Built-in methods 349

../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Examples

:- multifile(logtalk::print_message_token/4).
:- dynamic(logtalk::print_message_token/4).

% ignore all flush tokens
logtalk::print_message_token(_Stream, _Prefix, flush, _Tokens).

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3,
ask_question/5, question_hook/6, question_prompt_stream/4

2.5.14 Question asking

built-in method

ask_question/5

Description

ask_question(Question, Kind, Component, Check, Answer)

Built-in method for asking a question represented by a term, Question, which is converted to the question
text using the logtalk::message_tokens(Question, Component) hook predicate. This method is declared in
the logtalk built-in object as a public predicate. The default question prompt and the input stream used for
each Kind-Component pair can be found using the logtalk::question_prompt_stream(Kind, Component, Prompt,
Stream) hook predicate. The Check argument is a closure that is converted into a checking goal by extending
it with the user supplied answer. This predicate implements a read-loop that terminates when the checking
predicate succeeds.

This predicate starts by calling the logtalk::question_hook(Question, Kind, Component, Check, Answer) hook
predicate. If this predicate succeeds, the ask_question/5 predicate assumes that the question have been
successfully asked and replied.

Modes and number of proofs

ask_question(+nonvar, +nonvar, +nonvar, +callable, -term) - one

Meta-predicate template

ask_question(*, *, *, 1, *)

350 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.61.0

Errors

(none)

Examples

...,
logtalk::ask_question(enter_age, question, my_app, integer, Age),
...

See also:

question_hook/6, question_prompt_stream/4, message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4

built-in method

question_hook/6

Description

question_hook(Question, Kind, Component, Tokens, Check, Answer)

User-defined hook method for intercepting asking a question, declared in the logtalk built-in object as a
public, multifile, and dynamic predicate. This hook method is automatically called by the ask_question/5
method. When the call succeeds, the ask_question/5 method assumes that the question have been success-
fully asked and replied.

Modes and number of proofs

question_hook(+nonvar, +nonvar, +nonvar, +list(nonvar), +callable, -term) - zero_or_one

Meta-predicate template

question_hook(*, *, *, *, 1, *)

Errors

(none)

2.5. Built-in methods 351

../../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.61.0

Examples

:- multifile(logtalk::question_hook/6).
:- dynamic(logtalk::question_hook/6).

% use a pre-defined answer instead of asking the user
logtalk::question_hook(upper_limit, question, my_app, _, _, 3.7).

See also:

ask_question/5, question_prompt_stream/4 message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4,

built-in method

question_prompt_stream/4

Description

question_prompt_stream(Kind, Component, Prompt, Stream)

User-defined hook method for specifying the default prompt and input stream for asking a question for a
given kind and component. This method is declared in the logtalk built-in object as a public, multifile, and
dynamic predicate.

Modes and number of proofs

question_prompt_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::question_prompt_stream/4).
:- dynamic(logtalk::question_prompt_stream/4).

logtalk::question_prompt_stream(question, debugger, ' > ', user_input).

See also:

ask_question/5, question_hook/6, message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4

352 Chapter 2. Reference Manual

../../../docs/logtalk_0.html#logtalk-0

CHAPTER

THREE

TUTORIAL

3.1 List predicates

In this example, we will illustrate the use of:

• objects

• protocols

by using common list utility predicates.

3.1.1 Defining a list object

We will start by defining an object, list, containing predicate definitions for some common list predicates
like append/3, length/2, and member/2:

:- object(list).

:- public([
append/3, length/2, member/2

]).

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

length(List, Length) :-
length(List, 0, Length).

length([], Length, Length).
length([_| Tail], Acc, Length) :-

Acc2 is Acc + 1,
length(Tail, Acc2, Length).

member(Element, [Element| _]).
member(Element, [_| List]) :-

member(Element, List).

:- end_object.

What is different here from a regular Prolog program? The definitions of the list predicates are the usual
ones. We have two new directives, object/1-5 and end_object/0, that encapsulate the object’s code. In Logtalk,

353

The Logtalk Handbook, Release v3.61.0

by default, all object predicates are private; therefore, we have to explicitly declare all predicates that we
want to be public, that is, that we want to call from outside the object. This is done using the public/1 scope
directive.

After we copy the object code to a text file and saved it under the name list.lgt, we need to change the
Prolog working directory to the one used to save our file (consult your Prolog compiler reference manual).
Then, after starting Logtalk (see the Installing and running Logtalk section on the User Manual), we can
compile and load the object using the logtalk_load/1 Logtalk built-in predicate:

| ?- logtalk_load(list).

object list loaded
yes

We can now try goals like:

| ?- list::member(X, [1, 2, 3]).

X = 1;
X = 2;
X = 3;
no

or:

| ?- list::length([1, 2, 3], L).

L = 3
yes

The infix operator (::)/2 is used in Logtalk to send a message to an object. The message must match a
public object predicate. If we try to call a non-public predicate such as the length/3 auxiliary predicate an
exception will be generated:

| ?- list::length([1, 2, 3], 0, L).

uncaught exception:
error(

existence_error(predicate_declaration, length/3),
logtalk(list::length([1,2,3],0,_), ...)

)

The exception term describes the type of error and the context where the error occurred.

3.1.2 Defining a list protocol

As we saw in the above example, a Logtalk object may contain predicate directives and predicate definitions
(clauses). The set of predicate directives defines what we call the object’s protocol or interface. An interface
may have several implementations. For instance, we may want to define a new object that implements the
list predicates using difference lists. However, we do not want to repeat the predicate directives in the new
object. Therefore, what we need is to split the object’s protocol from the object’s implementation by defining
a new Logtalk entity known as a protocol. Logtalk protocols are compilations units, at the same level as
objects and categories. That said, let us define a listp protocol:

354 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.61.0

:- protocol(listp).

:- public([
append/3, length/2, member/2

]).

:- end_protocol.

Similar to what we have done for objects, we use the protocol/1-2 and end_protocol/0 directives to encapsu-
late the predicate directives. We can improve this protocol by documenting the call/return modes and the
number of proofs of each predicate using the mode/2 directive:

:- protocol(listp).

:- public(append/3).
:- mode(append(?list, ?list, ?list), zero_or_more).

:- public(length/2).
:- mode(length(?list, ?integer), zero_or_more).

:- public(member/2).
:- mode(member(?term, ?list), zero_or_more).

:- end_protocol.

We now need to change our definition of the list object by removing the predicate directives and by declar-
ing that the object implements the listp protocol:

:- object(list,
implements(listp)).

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).
...

:- end_object.

The protocol declared in listp may now be alternatively implemented using difference lists by defining a
new object, difflist:

:- object(difflist,
implements(listp).

append(L1-X, X-L2, L1-L2).
...

:- end_object.

3.1. List predicates 355

The Logtalk Handbook, Release v3.61.0

3.1.3 Summary

• It is easy to define a simple object: just put your Prolog code inside starting and ending object directives
and add the necessary scope directives. The object will be self-defining and ready to use.

• Define a protocol when you may want to provide or enable several alternative definitions to a given set
of predicates. This way we avoid needless repetition of predicate directives.

3.2 Dynamic object attributes

In this example, we will illustrate the use of:

• categories

• category predicates

• dynamic predicates

by defining a category that implements a set of predicates for handling dynamic object attributes.

3.2.1 Defining a category

We want to define a set of predicates to handle dynamic object attributes. We need public predicates
to set, get, and delete attributes, and a private dynamic predicate to store the attributes values. Let us
name these predicates set_attribute/2 and get_attribute/2, for getting and setting an attribute value,
del_attribute/2 and del_attributes/2, for deleting attributes, and attribute_/2, for storing the attributes
values.

But we do not want to encapsulate these predicates in an object. Why? Because they are a set of useful,
closely related, predicates that may be used by several, unrelated, objects. If defined at an object level, we
would be constrained to use inheritance in order to have the predicates available to other objects. Further-
more, this could force us to use multi-inheritance or to have some kind of generic root object containing all
kinds of possible useful predicates.

For this kind of situation, Logtalk enables the programmer to encapsulate the predicates in a category, so
that they can be used in any object. A category is a Logtalk entity, at the same level as objects and protocols.
It can contain predicates directives and/or definitions. Category predicates can be imported by any object,
without code duplication and without resorting to inheritance.

When defining category predicates, we need to remember that a category can be imported by more than one
object. Thus, the calls to the built-in methods that handle the private dynamic predicate (such as assertz/1 or
retract/1) must be made either in the context of self, using the message to self control structure, (::)/1, or in
the context of this (i.e. in the context of the object importing the category). This way, we ensure that when
we call one of the attribute predicates on an object, the intended object own definition of attribute_/2 will
be used. The predicates definitions are straightforward. For example, if opting for storing the attributes in
self :

:- category(attributes).

:- public(set_attribute/2).
:- mode(set_attribute(+nonvar, +nonvar), one).

:- public(get_attribute/2).
:- mode(get_attribute(?nonvar, ?nonvar), zero_or_more).

(continues on next page)

356 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

:- public(del_attribute/2).
:- mode(del_attribute(?nonvar, ?nonvar), zero_or_more).

:- public(del_attributes/2).
:- mode(del_attributes(@term, @term), one).

:- private(attribute_/2).
:- mode(attribute_(?nonvar, ?nonvar), zero_or_more).
:- dynamic(attribute_/2).

set_attribute(Attribute, Value):-
::retractall(attribute_(Attribute, _)),
::assertz(attribute_(Attribute, Value)).

get_attribute(Attribute, Value):-
::attribute_(Attribute, Value).

del_attribute(Attribute, Value):-
::retract(attribute_(Attribute, Value)).

del_attributes(Attribute, Value):-
::retractall(attribute_(Attribute, Value)).

:- end_category.

The alternative, opting for storing the attributes on this, is similar: just delete the uses of the (::)/1 control
structure from the code above.

We have two new directives, category/1-4 and end_category/0, that encapsulate the category code. If needed,
we can put the predicates directives inside a protocol that will be implemented by the category:

:- category(attributes,
implements(attributes_protocol)).

...

:- end_category.

Any protocol can be implemented by either an object, a category, or both.

3.2.2 Importing the category

We reuse a category’s predicates by importing them into an object:

:- object(person,
imports(attributes)).

...

:- end_object.

After compiling and loading this object and our category, we can now try queries like:

3.2. Dynamic object attributes 357

The Logtalk Handbook, Release v3.61.0

| ?- person::set_attribute(name, paulo).

yes

| ?- person::set_attribute(gender, male).

yes

| ?- person::get_attribute(Attribute, Value).

Attribute = name, Value = paulo ;
Attribute = gender, Value = male ;
no

3.2.3 Summary

• Categories are similar to objects: we just write our predicate directives and definitions bracketed by
opening and ending category directives.

• An object reuses a category by importing it. The imported predicates behave as if they have been
defined in the object itself.

• When do we use a category instead of an object? Whenever we have a set of closely related predicates
that we want to reuse in several, unrelated, objects without being constrained by inheritance relations.
Thus, categories can be interpreted as object building components.

3.3 A reflective class-based system

When compiling an object, Logtalk distinguishes prototypes from instance or classes by examining the object
relations. If an object instantiates and/or specializes another object, then it is compiled as an instance or
class, otherwise it is compiled as a prototype. A consequence of this is that, in order to work with instance or
classes, we always have to define root objects for the instantiation and specialization hierarchies (however,
we are not restricted to a single hierarchy). The best solution is often to define a reflective class-based system
[Maes87], where every class is also an object and, as such, an instance of some class.

In this example, we are going to define the basis for a reflective class-based system, based on an extension
of the ideas presented in [Cointe87]. This extension provides, along with root objects for the instantiation
and specialization hierarchies, explicit support for abstract classes [Moura94].

3.3.1 Defining the base classes

We will start by defining three classes: object, abstract_class, and class. The class object will contain all
predicates common to all objects. It will be the root of the inheritance graph:

:- object(object,
instantiates(class)).

% predicates common to all objects

:- end_object.

358 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.61.0

The class abstract_class specializes object by adding predicates common to all classes. It will be the
default meta-class for abstract classes:

:- object(abstract_class,
instantiates(class),
specializes(object)).

% predicates common to all classes

:- end_object.

The class class specializes abstract_class by adding predicates common to all instantiable classes. It will
be the root of the instantiation graph and the default meta-class for instantiable classes:

:- object(class,
instantiates(class),
specializes(abstract_class)).

% predicates common to all instantiable classes

:- end_object.

Note that all three objects are instances of class class. The instantiation and specialization relationships
are chosen so that each object may use the predicates defined in itself and in the other two objects, with no
danger of message lookup endless loops.

3.3.2 Summary

• An object that does not instantiate or specialize other objects is always compiled as a prototype.

• An instance must instantiate at least one object (its class). Similarly, a class must at least specialize or
instantiate other object.

• The distinction between abstract classes and instantiable classes is an operational one, depending on
the class inherited methods. A class is instantiable if inherits methods for creating instances. Con-
versely, a class is abstract if does not inherit any instance creation method.

3.4 Profiling programs

In this example, we will illustrate the use of:

• events

• monitors

by defining a simple profiler that prints the starting and ending time for processing a message sent to an
object.

3.4. Profiling programs 359

The Logtalk Handbook, Release v3.61.0

3.4.1 Messages as events

In a pure object-oriented system, all computations start by sending messages to objects. We can thus define
an event as the sending of a message to an object. An event can then be specified by the tuple (Object,
Message, Sender). This definition can be refined by interpreting the sending of a message and the return of
the control to the object that has sent the message as two distinct events. We call these events respectively
before and after. Therefore, we end up by representing an event by the tuple (Event, Object, Message,
Sender). For instance, if we send the message:

| ?- foo::bar(X).

X = 1
yes

the two corresponding events will be:

(before, foo, bar(X), user)
(after, foo, bar(1), user)

Note that the second event is only generated if the message succeeds. If the message as a goal have multiple
solutions, then one after event will be generated for each solution.

Events are automatically generated by the message sending mechanisms for each public message sent using
the (::)/2 operator.

3.4.2 Profilers as monitors

A monitor is an object that reacts whenever a spied event occurs. The monitor actions are defined by two
event handlers: before/3 for before events and after/3 for after events. These predicates are automatically
called by the message sending mechanisms when an event registered for the monitor occurs. These event
handlers are declared as public predicates in the monitoring built-in protocol.

In our example, we need a way to get the current time before and after we process a message. We will
assume that we have a time object implementing a cpu_time/1 predicate that returns the current CPU time
for the Prolog session:

:- object(time).

:- public(cpu_time/1).
:- mode(cpu_time(-number), one).
...

:- end_object.

Our profiler will be named stop_watch. It must define event handlers for the before and after events that
will print the event description (object, message, and sender) and the current time:

:- object(stop_watch,
% event handler predicates protocol
implements(monitoring)).

:- uses(time, [cpu_time/1]).

before(Object, Message, Sender) :-

(continues on next page)

360 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

write(Object), write(' <-- '), writeq(Message),
write(' from '), write(Sender), nl, write('STARTING at '),
cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

after(Object, Message, Sender) :-
write(Object), write(' <-- '), writeq(Message),
write(' from '), write(Sender), nl, write('ENDING at '),
cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

:- end_object.

After compiling and loading the stop_watch object (and the objects that we want to profile), we can use the
define_events/5 built-in predicate to set up our profiler. For example, to profile all messages that are sent to
the object foo, we need to call the goal:

| ?- define_events(_, foo, _, _, stop_watch).

yes

This call will register stop_watch as a monitor to all messages sent to object foo, for both before and after
events. Note that we say “as a monitor”, not “the monitor”: we can have any number of monitors over the
same events.

From now on, every time we sent a message to foo, the stop_watch monitor will print the starting and
ending times for the message execution. For instance:

| ?- foo::bar(X).

foo <-- bar(X) from user
STARTING at 12.87415 seconds
foo <-- bar(1) from user
ENDING at 12.87419 seconds

X = 1
yes

To stop profiling the messages sent to foo we use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, foo, _, _, stop_watch).

yes

This call will abolish all events defined over the object foo assigned to the stop_watch monitor.

3.4. Profiling programs 361

The Logtalk Handbook, Release v3.61.0

3.4.3 Summary

• An event is defined as the sending of a (public) message to an object.

• There are two kinds of events: before events, generated before a message is processed, and after
events, generated after the message processing completed successfully.

• Any object can be declared as a monitor to any event. A monitor shall reference the monitoring built-in
protocol in the object opening directive.

• A monitor defines event handlers, the predicates before/3 and after/3, that are automatically called by
the runtime engine when a spied event occurs.

• Three built-in predicates, define_events/5, current_event/5, and abolish_events/5, enables us define,
query, and abolish both events and monitors.

362 Chapter 3. Tutorial

CHAPTER

FOUR

FAQ

4.1 General

• Why are all versions of Logtalk numbered 2.x or 3.x?

• Why do I need a Prolog compiler to use Logtalk?

• Is the Logtalk implementation based on Prolog modules?

• Does the Logtalk implementation use term-expansion?

4.1.1 Why are all versions of Logtalk numbered 2.x or 3.x?

The numbers “2” and “3” in the Logtalk version string refers to, respectively, the second and the third
generations of the Logtalk language. Development of Logtalk 2 started on January 1998, with the first alpha
release for registered users on July and the first public beta on October. The first stable version of Logtalk
2 was released on February 9, 1999. Development of Logtalk 3 started on April 2012, with the first public
alpha released on August 21, 2012. The first stable version of Logtalk 3 was released on January 7, 2015.

4.1.2 Why do I need a Prolog compiler to use Logtalk?

Currently, the Logtalk language is implemented as a Prolog extension instead of as a standalone compiler.
Compilation of Logtalk source files is performed in two steps. First, the Logtalk compiler converts a source
file to a Prolog file. Second, the chosen Prolog compiler is called by Logtalk to compile the intermediate
Prolog file generated on the first step. The implementation of Logtalk as a Prolog extension allows users to
use Logtalk together with features only available on specific Prolog compilers.

4.1.3 Is the Logtalk implementation based on Prolog modules?

No. Logtalk is (currently) implemented is plain Prolog code. Only a few Prolog compilers include a module
system, with several compatibility problems between them. Moreover, the current ISO Prolog standard for
modules is next to worthless and is ignored by most of the Prolog community. Nevertheless, the Logtalk
compiler is able to compile simple modules (using a common subset of module directives) as objects for
backward-compatibility with existing code (see the Prolog integration and migration for details).

363

The Logtalk Handbook, Release v3.61.0

4.1.4 Does the Logtalk implementation use term-expansion?

No. Term-expansion mechanisms are not standard and are not available in all supported Prolog compilers.

4.2 Compatibility

• What are the backend Prolog compiler requirements to run Logtalk?

• Can I use constraint-based packages with Logtalk?

• Can I use Logtalk objects and Prolog modules at the same time?

4.2.1 What are the backend Prolog compiler requirements to run Logtalk?

See the backend Prolog compiler requirements guide.

4.2.2 Can I use constraint-based packages with Logtalk?

Usually, yes. Some constraint-based packages may define operators which clash with the ones defined by
Logtalk. In these cases, compatibility with Logtalk depends on the constraint-based packages providing
an alternative for accessing the functionality provided by those operators. When the constraint solver is
encapsulated using a Prolog module, a possible workaround is to use either explicit module qualification or
encapsulate the call using the {}/1 control construct (thus bypassing the Logtalk compiler).

4.2.3 Can I use Logtalk objects and Prolog modules at the same time?

Yes. In order to call a module predicate from within an object (or category) you may use an use_module/2
directive or use explicit module qualification (possibly wrapping the call using the Logtalk control construct
{}/1 that allows bypassing of the Logtalk compiler when compiling a predicate call). Logtalk also allows
modules to be compiled as objects (see the Prolog integration and migration for details).

4.3 Installation

• The integration scripts/shortcuts are not working!

• I get errors when starting up Logtalk after upgrading to the latest version!

4.3.1 The integration scripts/shortcuts are not working!

Check that the LOGTALKHOME and LOGTALKUSER environment variables are defined, that the Logtalk user
folder is available on the location pointed by LOGTALKUSER (you can create this folder by running the
logtalk_user_setup shell script), and that the Prolog compilers that you want to use are supported and
available from the system path. If the problem persists, run the shell script that creates the integration script
or shortcut manually and check for any error message or additional instructions. For some Prolog compilers
such as XSB and Ciao, the first call of the integration script or shortcut must be made by an administrator
user. If you are using Windows, make sure that any anti-virus or other security software that you might have
installed is not silently blocking some of the installer tasks.

364 Chapter 4. FAQ

https://logtalk.org/backend_requirements.html

The Logtalk Handbook, Release v3.61.0

4.3.2 I get errors when starting up Logtalk after upgrading to the latest version!

Changes in the Logtalk compiler between releases may render Prolog adapter files from older versions in-
compatible with new ones. You may need to update your local Logtalk user files by running e.g. the
logtalk_user_setup shell script. Check the UPGRADING.md file on the root of the Logtalk installation direc-
tory and the release notes for any incompatible changes to the adapter files.

4.4 Portability

• Are my Logtalk applications portable across Prolog compilers?

• Are my Logtalk applications portable across operating systems?

4.4.1 Are my Logtalk applications portable across Prolog compilers?

Yes, as long you don’t use built-in predicates or special features only available on some Prolog compilers.
There is a portability compiler flag that you can set to instruct Logtalk to print a warning for each occurrence
of non-ISO Prolog standard features such as proprietary built-in predicates. In addition, it is advisable that
you constrain, if possible, the use of platform or compiler dependent code to a small number of objects with
clearly defined protocols. You may also use Logtalk support for conditional compilation to compile different
entity or predicate definitions depending on the backend Prolog compiler being used.

4.4.2 Are my Logtalk applications portable across operating systems?

Yes, as long you don’t use built-in predicates or special features that your chosen backend Prolog compiler
only supports in some operating-systems. You may need to change the end-of-lines characters of your source
files to match the ones on the target operating system and the expectations of your Prolog compiler. Some
Prolog compilers silently fail to compile source files with the wrong end-of-lines characters.

4.5 Programming

• Should I use prototypes or classes in my application?

• Can I use both classes and prototypes in the same application?

• Can I mix classes and prototypes in the same hierarchy?

• Can I use a protocol or a category with both prototypes and classes?

• What support is provided in Logtalk for defining and using components?

• What support is provided in Logtalk for reflective programming?

4.4. Portability 365

The Logtalk Handbook, Release v3.61.0

4.5.1 Should I use prototypes or classes in my application?

Prototypes and classes provide different patterns of code reuse. A prototype encapsulates code that can be
used by itself and by its descendent prototypes. A class encapsulates code to be used by its descendent
instances. Prototypes provide the best replacement to the use of modules as encapsulation units, avoiding
the need to instantiate a class in order to access its code.

4.5.2 Can I use both classes and prototypes in the same application?

Yes. In addition, you may freely exchange messages between prototypes, classes, and instances.

4.5.3 Can I mix classes and prototypes in the same hierarchy?

No. However, you may define as many prototype hierarchies and class hierarchies and classes as needed by
your application.

4.5.4 Can I use a protocol or a category with both prototypes and classes?

Yes. A protocol may be implemented by both prototypes and classes in the same application. Likewise, a
category may be imported by both prototypes and classes in the same application.

4.5.5 What support is provided in Logtalk for defining and using components?

Logtalk supports component-based programming (since its inception on January 1998), by using categories
(which are first-class entities like objects and protocols). Logtalk categories can be used with both classes
and prototypes and are inspired on the Smalltalk-80 (documentation-only) concept of method categories
and on Objective-C categories, hence the name. For more information, please consult the Categories section
and the examples provided with the distribution.

4.5.6 What support is provided in Logtalk for reflective programming?

Logtalk supports meta-classes, behavioral reflection through the use of event-driven programming, and struc-
tural reflection through the use of a set of built-in predicates and built-in methods which allow us to query
the system about existing entities, entity relations, and entity predicates.

4.6 Troubleshooting

• Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

• Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting
files!

• Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compila-
tion with zero errors and zero warnings!

366 Chapter 4. FAQ

The Logtalk Handbook, Release v3.61.0

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do
not work!

Using compiler options on calls to the Logtalk logtalk_compile/2 and logtalk_load/2 built-in predicates only
apply the file being compiled. If the first argument is a loader file, the compiler options will only be used
in the compilation of the loader file itself, not in the compilation of the files loaded by the loader file. The
solution is to edit the loader file and add the compiler options to the calls that compile/load the individual
files.

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when
browsing XML documenting files!

Using Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities (e.g. –) when browsing
XML documenting files after running the lgt2xml shell script in the directory containing the XML document-
ing files. This is a consequence of the lack of support for the disable-output-escaping attribute in the
browser XSLT processor. The workaround is to use other browser (e.g. Safari or Opera) or to use instead
the lgt2html shell script in the directory containing the XML documenting files to convert them to (X)HTML
files for browsing.

4.6.3 Compiling a source file results in errors orwarnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings!

This may happen when your Prolog compiler implementation of the ISO Prolog standard write_canonical/
2 built-in predicate is buggy and writes terms that cannot be read back when consulting the intermediate
Prolog files generated by the Logtalk compiler. Often, syntax errors found when consulting result in error
messages but not in exceptions as the Prolog compiler tries to continue the compilation despite the problems
found. As the Logtalk compiler relies on the exception mechanisms to catch compilation problems, it may
report zero errors and zero warnings despite the error messages. Send a bug report to the Prolog compiler
developers asking them to fix the write_canonical/2 buggy implementation.

4.7 Usability

• Is there a shortcut for compiling and loading source files?

• Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

• Are there shortcuts for the make functionality?

4.7.1 Is there a shortcut for compiling and loading source files?

Yes. With most backend Prolog compilers, you can use {File} as a shortcut for logtalk_load(File). For
compiling and loading multiple files simply use {File1, File2, ...}. See the documentation of the
logtalk_load/1 predicate for details.

4.7. Usability 367

The Logtalk Handbook, Release v3.61.0

4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

You can use the goal logtalk_load(File, [reload(skip)]) to ensure that File is only loaded once. See the
documentation of the logtalk_load/2 predicate for details.

4.7.3 Are there shortcuts for the make functionality?

Yes. With most backend Prolog compilers, you can use {*} as a shortcut for logtalk_make(all) to
reload all files modified since last compiled and loaded, {!} as a shortcut for logtalk_make(clean)
to delete all intermediate Prolog files generated by the compilation of Logtalk source files, {?} as a
shortcut for logtalk_make(missing) to list missing entities and predicates, and {@} as a shortcut for
logtalk_make(circular) to list circular references. See the documentation of the logtalk_make/1 predi-
cate for details.

4.8 Deployment

• Can I create standalone applications with Logtalk?

4.8.1 Can I create standalone applications with Logtalk?

It depends on the Prolog compiler that you use to run Logtalk. Assuming that your Prolog compiler supports
the creation of standalone executables, your application must include the adapter file for your compiler and
the Logtalk compiler and runtime. The distribution includes embedding scripts for selected backend Prolog
compilers and embedding examples.

For instructions on how to embed Logtalk and Logtalk applications see the embedding guide.

4.9 Performance

• Is Logtalk implemented as a meta-interpreter?

• What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

• How about message-sending performance? Does Logtalk use static binding or dynamic binding?

• How does Logtalk performance compare with plain Prolog and with Prolog modules?

4.9.1 Is Logtalk implemented as a meta-interpreter?

No. Objects and their encapsulated predicates are compiled, not meta-interpreted. In particular, inheritance
relations are pre-compiled for improved performance. Moreover, no meta-interpreter is used even for objects
compiled in debug mode.

368 Chapter 4. FAQ

https://logtalk.org/embedding.html

The Logtalk Handbook, Release v3.61.0

4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code?
Static code?

Static objects are compiled to static code. Static objects containing dynamic predicates are also compiled
to static code, except, of course, for the dynamic predicates themselves. Dynamic objects are necessarily
compiled to dynamic code. As in Prolog programming, for best performance, dynamic object predicates and
dynamic objects should only be used when truly needed.

4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-
namic binding?

Logtalk supports both static binding and dynamic binding. When static binding is not possible, Logtalk uses
dynamic binding coupled with a caching mechanism that avoids repeated lookups of predicate declarations
and predicate definitions. This is a solution common to other programming languages supporting dynamic
binding. Message lookups are automatically cached the first time a message is sent. Cache entries are
automatically removed when loading entities or using Logtalk dynamic features that invalidate the cached
lookups. Whenever static binding is used, message sending performance is essentially the same as a predicate
call in plain Prolog. Performance of dynamic binding when lookups are cached is close to the performance
that would be achieved with static binding. See the User Manual section on performance for more details.

4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance?

Logtalk compiles objects assuming first-argument indexing for static code. First-argument indexing of dy-
namic code, when available, helps to improve performance due to the automatic caching of method lookups
and the necessary use of book-keeping tables by the runtime engine (this is specially important when using
event-driven programming). Dynamic objects and static objects containing dynamic predicates also benefit
from first-argument indexing of dynamic predicates. The availability of multi-argument indexing, notably
for dynamic predicates, also benefits dynamic binding performance.

4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog mod-
ules?

Plain Prolog, Prolog modules, and Logtalk objects provide different trade-offs between performance and
features. In general, for a given predicate definition, the best performance will be attained using plain
Prolog, second will be Prolog modules (assuming no explicitly qualified calls are used), and finally Logtalk
objects. Whenever static binding is used, the performance of Logtalk is equal or close to that of plain Prolog
(depending on the Prolog virtual machine implementation and compiler optimizations). See the simple
benchmark test results using some popular Prolog compilers.

4.10 Licensing

• What’s the Logtalk distribution license?

• Can Logtalk be used in commercial applications?

• What’s the final license for a combination of Logtalk with a Prolog compiler?

4.10. Licensing 369

https://logtalk.org/performance.html
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.61.0

4.10.1 What’s the Logtalk distribution license?

Logtalk follows the Apache License 2.0.

4.10.2 Can Logtalk be used in commercial applications?

Yes, the Apache License 2.0 allows commercial use. See e.g. the Apache License and Distribution FAQ.

4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler?

See the licensing guide for details and relevant resources.

4.11 Support

• Are there professional consulting, training and supporting services?

4.11.1 Are there professional consulting, training and supporting services?

Yes. Please visit logtalk.pt for professional consulting, developing, training, and other supporting services.

370 Chapter 4. FAQ

https://github.com/LogtalkDotOrg/logtalk3/blob/master/LICENSE.txt
http://www.apache.org/foundation/license-faq.html
https://logtalk.org/licensing.html
https://logtalk.pt

CHAPTER

FIVE

DEVELOPER TOOLS

The documentation of each developer tool can also be found in the tool directory in the NOTES.md file.

5.1 Overview

The following developer tools are available, each one with its own loader.lgt loader file (except for the
built-in linter and make tools, which are integrated with the compiler/runtime) and NOTES.md documenta-
tion files:

• asdf

• assertions

• code_metrics

• dead_code_scanner

• debug_messages

• debugger

• diagrams

• doclet

• help

• issue_creator

• lgtdoc

• lgtunit

• linter

• make

• packs

• ports_profiler

• profiler

• tutor

• wrapper

371

The Logtalk Handbook, Release v3.61.0

5.1.1 Loading the developer tools

To load the main developer tools, use the following goal:

| ?- logtalk_load(tools(loader)).

The ports_profiler tool is not loaded by default, however, as it conflicts with the debugger tool as both
provide a debug handler that must be unique in a running session.

The profiler tool is also not loaded by default as it provides integration with selected backend Prolog
compiler profilers that are not portable.

The tutor tool is also not loaded by default given its useful mainly for new users that need help understand-
ing compiler warning and error messages.

The wrapper tool is also not loaded by default given its specialized purpose and beta status.

To load a specific tool, either change your Prolog working directory to the tool folder and then compile and
load the corresponding loader utility file or simply use library notation as argument for the compiling and
loading predicates. For example:

| ?- logtalk_load(lgtunit(loader)).

5.1.2 Tools documentation

Specific notes about each tool can be found in the corresponding NOTES.md files. HTML documentation for
each tool API can be found on the docs directory (open the ../docs/index.html file with your web browser).
The documentation for these tools can be regenerated using the shell scripts ../scripts/update_html_docs.
sh and ../scripts/update_svg_diagrams.sh.

5.1.3 Tools common flags

The lgtdoc and lgtunit tools share a suppress_path_prefix flag that can be used to suppress a prefix when
printing file paths. For example (after loading the tools):

| ?- set_logtalk_flag(suppress_path_prefix, '/home/jdoe/').

5.1.4 Tools requirements

Some of the developer tools have third-party dependencies. For example, the lgtdoc tool depends on XSLT
processors to generate documentation final formats and uses Sphinx for the preferred HTML final format.
Be sure to consult the tools documentation details on those requirements and possible alternatives. For
convenience, follows a global list of the main tool requirements and suggestions for installing them per
operating-system. If your operating-system or a dependency for it is not listed, see the dependency websites
for installation instructions.

372 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

Tool dependencies for full functionality

• diagrams: Graphviz

• help: info

• issue_creator: gh, glab

• lgtdoc: Sphinx, libxslt, fop

• lgtunit: Allure

• packs: coreutils, libarchive, gnupg2, git

Python dependencies (all operating-systems)

$ pip install --upgrade pygments
$ pip install --upgrade sphinx
$ pip install --upgrade sphinx_rtd_theme

macOS - MacPorts

$ sudo port install graphviz
$ sudo port install texinfo
$ sudo port install libxslt fop
$ sudo port install coreutils libarchive gnupg2 git
$ sudo port install gh glab

macOS - Homebrew

$ brew install graphviz
$ brew install texinfo
$ brew install libxslt fop
$ brew install allure
$ brew install coreutils libarchive gnupg2 git
$ brew install gh glab

Ubuntu

$ sudo apt install graphviz
$ sudo apt install info
$ sudo apt install xsltproc fop
$ sudo apt-add-repository ppa:qameta/allure && sudo apt install allure
$ sudo apt install libarchive-tools gnupg2 git

5.1. Overview 373

The Logtalk Handbook, Release v3.61.0

RedHat

$ sudo dnf install graphviz
$ sudo dnf install libxslt fop
$ sudo dnf install bsdtar gnupg2 git

Windows - Chocolatey

> choco install graphviz
> choco install xsltproc apache-fop
> choco install gnupg git
> choco install gh glab

Windows - installers

https://www.graphviz.org/download/
https://docs.qameta.io/allure-report/
https://www.gnupg.org/
https://gitforwindows.org
https://cli.github.com
https://glab.readthedocs.io

5.2 asdf

A Logtalk plugin for the asdf extendable version manager is available at:

https://github.com/LogtalkDotOrg/asdf-logtalk

This plugin provides an alternative to the logtalk_version_select script that can be useful to manage
Logtalk versions when developing solutions that use other languages and tools that can also be handled by
asdf.

5.3 assertions

The assertions.lgt file contains definitions for two meta-predicates, assertion/1-2, which allows using of
assertions on your source code to print warning and error messages (using the message printing mechanism).
The assertions_messages.lgt file defines the default message translations generated on assertions succeed,
fail, or throw an exception.

374 Chapter 5. Developer Tools

https://www.graphviz.org/download/
https://docs.qameta.io/allure-report/
https://www.gnupg.org/
https://gitforwindows.org
https://cli.github.com
https://glab.readthedocs.io
https://asdf-vm.com/#/
https://github.com/LogtalkDotOrg/asdf-logtalk

The Logtalk Handbook, Release v3.61.0

5.3.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#assertions

5.3.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(assertions(loader)).

5.3.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(assertions(tester)).

5.3.4 Adding assertions to your source code

The assertion/1 predicate takes a goal as argument. For example:

foo(L) :-
assertions::assertion(non_empty_list(L)),
...

The assertion/2 predicate takes as arguments a term for passing context information and a goal. Using
again a unit test as an example:

foo(L) :-
assertions::assertion(foo_list_alerts, non_empty_list(L)),
...

When using a large number of assertions, you can use a lighter syntax by adding a uses/2 directive. For
example:

:- uses(assertions, [assertion/1, assertion/2]).

5.3.5 Automatically adding file and line context information to assertions

The assertions/1 parametric object can be used as a hook object to automatically add file and line context
information, represented by the term file_lines(File, BeginLine-EndLine), to calls to the assertion/1
predicate by goal-expanding it to calls to the assertion/2 predicate (the expansion assumes that a uses/
2 directive is being used in the code that will be expanded to direct assertion/1 calls to the assertions
object). For example, assuming the file using assertions is named source, it would be compiled and loaded
using the call:

logtalk_load(source, [hook(assertions(debug))])

5.3. assertions 375

../../docs/library_index.html#assertions

The Logtalk Handbook, Release v3.61.0

5.3.6 Suppressing assertion calls from source code

The assertions/1 parametric object can be used as a hook object to suppress calls to the assertion/1-2
predicates using goal-expansion (the expansion assumes assertions::assertion/1-2 messages). For exam-
ple, assuming the file using assertions is named source, it would be compiled and loaded using the call:

logtalk_load(source, [hook(assertions(production))])

5.3.7 Redirecting assertion failure messages

By default, assertion failures and errors are printed to the standard output stream. These messages, however,
can be intercepted by defining the logtalk::message_hook/4 multifile predicate. For example:

:- category(redirect_assertions_messages).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(Message, error, assertions, _) :-
writeq(my_log_file, Message), write(my_log_file, '.\n').

:- end_category.

5.3.8 Converting assertion failures into errors

If you want an assertion failure to result in a failure or a runtime error, you can intercept the assertion failure
messages, optionally still printing them, and throw an error. For example:

:- category(assertions_failures_to_errors).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(Message, error, assertions, Tokens) :-
% uncomment the next two lines to also print the default message
% logtalk::message_prefix_stream(error, assertions, Prefix, Stream),
% logtalk::print_message_tokens(Stream, Prefix, Tokens),
throw(error(Message, _)).

:- end_category.

In alternative, if you want assertions to always trigger an exception, use instead the lgtunit tool assertions/
1-2 public predicates.

376 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.4 code_metrics

The purpose of this tool is to assess qualities of source code that may predict negative aspects such as entity
coupling, cohesion, complexity, error-proneness, and overall maintainability. It is meant to be extensible via
the addition of objects implementing new metrics.

This tool provides predicates for computing metrics for source files, entities, libraries, files, and directories.
The actual availability of a particular predicate depends on the specific metric. One set of predicates prints,
by default, the computed metric values to the standard output. A second set of predicates computes and
returns a score (usually a compound term with the computed metric values as arguments).

5.4.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#code-metrics

5.4.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(code_metrics(loader)).

5.4.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(code_metrics(tester)).

5.4.4 Available metrics

Currently, the following metrics are provided:

• Number of Clauses (noc_metric)

• Number of Rules (nor_metric)

• Unique Predicate Nodes (upn_metric)

• Cyclomatic Complexity (cc_metric)

• Depth of Inheritance (dit_metric)

• Efferent coupling, afferent coupling, instability, and abstractness (coupling_metric)

• Documentation (doc_metric)

• Source code size (size_metric)

• Halstead complexity (halstead_metric and halstead_metric(Stroud))

A helper object, code_metrics, is also provided allowing running all loaded individual metrics. For code
coverage metrics, see the lgtunit tool documentation.

For interpretation of the coupling metric scores, see e.g. the original paper by Robert Martin, “OO Design
Quality Metrics”:

5.4. code_metrics 377

../../docs/library_index.html#code-metrics

The Logtalk Handbook, Release v3.61.0

@inproceedings{citeulike:1579528,
author = "Martin, Robert",
booktitle = "Workshop Pragmatic and Theoretical Directions in Object-Oriented Software␣

→˓Metrics",
citeulike-article-id = 1579528,
citeulike-linkout-0 = "http://www.objectmentor.com/resources/articles/oodmetrc.pdf",
keywords = "diplomarbeit",
organization = "OOPSLA'94",
posted-at = "2007-08-21 11:08:44",
priority = 0,
title = "OO Design Quality Metrics - An Analysis of Dependencies",
url = "http://www.objectmentor.com/resources/articles/oodmetrc.pdf",
year = 1994

}

The Halstead metric computation uses the reflection API for performance. The main consequence of this
choice is that we abstract all predicate arguments. A computation closer to the original definition of the
metric would require switching to use the parser to collect information on syntactic literals, which would
imply a much large computation cost.

The coupling metric was also influenced by the metrics rating system in Microsoft Visual Studio and aims to
eventually emulate the functionality of a maintainability index score.

The unique predicate nodes (UPN) metric is described in the following paper:

@article{MOORES199845,
title = "Applying Complexity Measures to Rule-Based Prolog Programs",
journal = "Journal of Systems and Software",
volume = "44",
number = "1",
pages = "45 - 52",
year = "1998",
issn = "0164-1212",
doi = "https://doi.org/10.1016/S0164-1212(98)10042-0",
url = "http://www.sciencedirect.com/science/article/pii/S0164121298100420",
author = "Trevor T Moores"

}

The cyclomatic complexity metric uses the same predicate abstraction as the UPN metric and it is also
described in the above paper besides the original paper by Thomas J. McCabe:

@inproceedings{McCabe:1976:CM:800253.807712,
author = "McCabe, Thomas J.",
title = "A Complexity Measure",
booktitle = "Proceedings of the 2Nd International Conference on Software Engineering",
series = "ICSE '76",
year = 1976,
location = "San Francisco, California, USA",
pages = "407--",
url = "http://dl.acm.org/citation.cfm?id=800253.807712",
acmid = 807712,
publisher = "IEEE Computer Society Press",
address = "Los Alamitos, CA, USA",
keywords = "Basis, Complexity measure, Control flow, Decomposition, Graph theory,␣

(continues on next page)

378 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

→˓Independence, Linear, Modularization, Programming, Reduction, Software, Testing",
}

Be sure to fully understand the metrics individual meanings and any implementation limitations before using
them to support any evaluation or decision process.

5.4.5 Usage

All metrics require the source code to be analyzed to be loaded with the source_data flag turned on. For
usage examples, see the SCRIPT.txt file in the tool directory.

5.4.6 Defining new metrics

New metrics can be implemented by defining an object that imports the code_metric category and imple-
ments its score predicates. There is also a code_metrics_utilities category that defines useful predicates
for the definition of metrics.

5.4.7 Third-party tools

cloc is an open-source command-line program that counts blank lines, comment lines, and lines of source
code in many programming languages including Logtalk. Available at https://github.com/AlDanial/cloc

ohcount is an open-source command-line program that counts blank lines, comment lines, and lines
of source code in many programming languages including Logtalk. Available at https://github.com/
blackducksoftware/ohcount

tokei is an open-source command-line program that counts blank lines, comment lines, and lines of source
code in many programming languages including Logtalk. Available at https://github.com/Aaronepower/
tokei

5.4.8 Applying metrics to Prolog modules

Some of the metrics can also be applied to Prolog modules that Logtalk is able to compile as objects. For
example, if the Prolog module file is named module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance of proprietary extensions, this
solution is not expected to work for all cases.

5.4.9 Applying metrics to plain Prolog code

Some of the metrics can also be applied to plain Prolog code. For example, if the Prolog file is named
code.pl, simply define an object including its code:

:- object(code).
:- include('code.pl').

:- end_object.

5.4. code_metrics 379

https://github.com/AlDanial/cloc
https://github.com/blackducksoftware/ohcount
https://github.com/blackducksoftware/ohcount
https://github.com/Aaronepower/tokei
https://github.com/Aaronepower/tokei

The Logtalk Handbook, Release v3.61.0

Save the object to an e.g. code.lgt file in the same directory as the Prolog file and then load it in debug
mode:

| ?- logtalk_load(code, [source_data(on)]).

In alternative, use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on)]).

With either wrapping solution, pay special attention to any compilation warnings that may signal issues that
could prevent the plain Prolog code of working when wrapped by an object.

5.5 dead_code_scanner

This tool detects likely dead code in Logtalk entities and in Prolog modules compiled as objects. Predicates
(and non-terminals) are classified as dead code when:

• There is no scope directive for them and they are not called, directly or indirectly, by any predicate
with a (local or inherited) scope directive.

• They are listed in uses/2 and use_module/2 directives but not called.

Besides dead code, this tool can also help detect other problems in the code that often result in re-
porting false positives. For example, typos in alias/2 directives, missing scope directives, and missing
meta_non_terminal/1 and meta_predicate/1 directives.

Given the possibility of false positives, care must be taken before deleting reported dead code to ensure that
it’s, in fact, code that is not used. A common cause of false positives is the use of conditional compilation
directives to provide implementations for predicates missing in some systems.

The dead_code_scanner.lgt source file implements the scanning predicates for finding dead code in entities,
libraries, and directories. The source file dead_code_scanner_messages.lgt defines the default translations
for the messages printed when scanning for dead code. These messages can be intercepted to customize
output, e.g. to make it less verbose, or for integration with e.g. GUI IDEs and continuous integration servers.

5.5.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#dead-code-scanner

For sample queries, please see the SCRIPT.txt file in the tool directory.

380 Chapter 5. Developer Tools

../../docs/library_index.html#dead-code-scanner

The Logtalk Handbook, Release v3.61.0

5.5.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(dead_code_scanner(loader)).

5.5.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(dead_code_scanner(tester)).

5.5.4 Usage

This tool provides a set of predicates that allows scanning entities, libraries, files, and directories. See the
tool API documentation for details. The source code to be analyzed should be loaded with the source_data
and optimize flags turned on (possibly set in a loader file).

As an example, assume that we want to scan an application with a library alias my_app. The following goals
could be used:

| ?- set_logtalk_flag(source_data, on),
set_logtalk_flag(optimize, on).

yes

| ?- logtalk_load(my_app(loader)).
...
yes

| ?- dead_code_scanner::library(my_app).
...

For complex applications that make use of sub-libraries, there is also a rlibrary/1 predicate that performs
a recursive scan of a library and all its sub-libraries. Conversely, we may be interested in scanning a single
entity:

| ?- dead_code_scanner::entity(some_object).
...

For other usage examples, see the SCRIPT.txt file in the tool directory.

5.5.5 Integration with the make tool

The loader.lgt file sets a make target action that will call the dead_code_scanner::all goal whenever the
logtalk_make(check) goal (or its top-level abbreviation, {?}) is called.

5.5. dead_code_scanner 381

The Logtalk Handbook, Release v3.61.0

5.5.6 Caveats

Use of local meta-calls with goal arguments only known at runtime can result in false positives. When using
library or user-defined meta-predicates, compilation of the source files with the optimize flag turned on may
allow meta-calls to be resolved at compile time and thus allow calling information for the meta-arguments
to be recorded, avoiding false positives for predicates that are only meta-called.

5.5.7 Scanning Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to compile as objects. For example, if the
Prolog module file is named module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance of proprietary extensions, this
solution is not expected to work for all cases.

5.5.8 Scanning plain Prolog files

This tool can also be applied to plain Prolog code. For example, if the Prolog file is named code.pl, simply
define an object including its code:

:- object(code).
:- include('code.pl').

:- end_object.

Save the object to an e.g. code.lgt file in the same directory as the Prolog file and then load it in debug
mode:

| ?- logtalk_load(code, [source_data(on), optimize(on)]).

In alternative, use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on), optimize(on)]).

With either wrapping solution, pay special attention to any compilation warnings that may signal issues that
could prevent the plain Prolog from being fully analyzed when wrapped by an object.

5.6 debug_messages

By default, debug and debug(Group) messages are only printed when the debug flag is turned on. These
messages are also suppressed when compiling code with the optimize flag turned on. This tool supports
selective enabling of debug and debug(Group) messages in normal and debug modes.

382 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.6.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#debug-messages

For general information on debugging, open in a web browser the following link and consult the debugging
section of the User Manual:

../../manuals/userman/debugging.html

5.6.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(debug_messages(loader)).

5.6.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(debug_messages(tester)).

5.6.4 Usage

The tool provides two sets of predicates. The first set allows enabling and disabling of all debug
and debug(Group) messages for a given component. The second set allows enabling and disabling of
debug(Group) messages for a given group and component for fine-grained control.

Upon loading the tool, all debug messages are skipped. The user is then expected to use the tool API to
selectively enable the messages that will be printed. As an example, consider the following object, part of a
xyz component:

:- object(foo).

:- public([bar/0, baz/0]).
:- uses(logtalk, [print_message/3]).

bar :-
print_message(debug(bar), xyz, @'bar/0 called').

baz :-
print_message(debug(baz), xyz, @'baz/0 called').

:- end_object.

Assuming the object foo is compiled and loaded in normal or debug mode, after also loading this tool, bar/0
and baz/0 messages will not print any debug messages:

| ?- {debug_messages(loader), foo}.
...
yes

(continues on next page)

5.6. debug_messages 383

../../docs/library_index.html#debug-messages
../../manuals/userman/debugging.html

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

| ?- foo::(bar, baz).
yes

We can then enable all debug messages for the xyz component:

| ?- debug_messages::enable(xyx).
yes

| ?- foo::(bar, baz).
bar/0 called
baz/0 called
yes

Or we can selectively enable only debug messages for a specific group:

| ?- debug_messages::disable(xyx).
yes

| ?- debug_messages::enable(xyx, bar).
yes

| ?- foo::(bar, baz).
bar/0 called
yes

5.7 debugger

This tool provides the default Logtalk command-line debugger. Unlike Prolog systems, the Logtalk debugger
is a regular application, using a public API. As a consequence, it must be explicitly loaded by the programmer,
either manually at the top-level interpreter or automatically from a settings file.

5.7.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#debugger

5.7.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(debugger(loader)).

Note that this tool cannot be loaded at the same time as other tools (e.g. the ports profiler) that also provide
a debug handler, which must be unique in a running session.

When the code to be debugged runs computationally expensive initializations, loading this tool after the
code may have a noticeable impact in loading times.

384 Chapter 5. Developer Tools

../../docs/library_index.html#debugger

The Logtalk Handbook, Release v3.61.0

5.7.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(debugger(tester)).

5.7.4 Usage

Debugging Logtalk source code (with this debugger) requires compiling source files using the debug(on)
compiler flag. For example:

| ?- logtalk_load(my_buggy_code, [debug(on)]).

In alternative, you may also turn on the debug flag globally by typing:

| ?- set_logtalk_flag(debug, on).

But note that loader files may override this flag setting (e.g. by using debug(off) or optimize(on) options
for loaded files). If that’s the case, you will need to either edit the loader files or write customized loader
files enabling debugging. For detailed information on using the debugger, consult the debugging section of
the User Manual:

../../manuals/userman/debugging.html

The debugger_messages.lgt source file defines the default debugger message translations.

The dump_trace.lgt provides a simple solution for dumping a goal trace to a file. For example:

| ?- dump_trace::start_redirect_to_file('trace.txt', some_goal),
dump_trace::stop_redirect_to_file.

5.7.5 Alternative debugger tools

Logtalk provides basic support for the SWI-Prolog graphical tracer. The required settings are described in the
settings-sample.lgt file. Logtalk queries can be traced using this tool by using the gtrace/0-1 predicates.
For example:

| ?- gtrace(foo::bar).

or:

| ?- gtrace, foo::bar.

You can also use the gspy/1 predicate to spy a Logtalk predicate specified as Entity::Functor/Arity when
using the graphical tracer. When using this tool, internal Logtalk compiler/runtime predicates and compiled
predicates that resulted from the term-expansion mechanism may be exposed in some cases. This issue is
shared with Prolog code and results from the non-availability of source code for the predicates being traced.

5.7. debugger 385

../../manuals/userman/debugging.html

The Logtalk Handbook, Release v3.61.0

5.7.6 Known issues

Line number spy points (aka breakpoints) require a Prolog backend compiler that supports accessing read
term starting line but only some backends (B-Prolog, GNU Prolog, JIProlog, Lean Prolog, LVM, SICStus
Prolog, SWI-Prolog, and YAP) provide accurate line numbers.

As a workaround, you can check the start line number for an entity predicate definition using a query such
as:

| ?- object_property(Entity, defines(Functor/Arity, Properties)).

and checking the returned line_count/1 property to find if there’s any offset to the source file number of the
predicate clause that you want to trace. This issue, if present, usually only affects the first predicate clause.

Line number spy points are currently not available when using XSB as the Prolog backend compiler.

5.8 diagrams

This tool generates library, directory, file, entity, and predicate diagrams for source files and for libraries of
source files using the Logtalk reflection API to collect the relevant information and a graph language for
representing the diagrams. Limited support is also available for generating diagrams for Prolog module
applications. It’s also possible in general to generate predicate cross-referencing diagrams for plain Prolog
files.

Linking library diagrams to entity diagrams to predicate cross-referencing diagrams and linking directory di-
agrams to file diagrams is also supported when using SVG output. This feature allows using diagrams for
understanding the architecture of applications by navigating complex code and zooming into details. SVG
output can also easily link to both source code repositories and API documentation. This allows diagrams to
be used for source code navigation.

Diagrams can also be used to uncover code issues. For example, comparing loading diagrams with dependency
diagrams can reveal implicit dependencies. Loading diagrams can reveal circular dependencies that may
warrant code refactoring. Entity diagrams can provide a good overview of code coupling. Predicate cross-
referencing diagrams can be used to visually access entity code complexity, complementing the code_metrics
tool.

All diagrams support a comprehensive set of options, discussed below, to customize the final contents and
appearance.

Diagram generation can be easily automated using the doclet tool and the logtalk_doclet scripts. See the
doclet tool examples and documentation for details. See also the diagrams tool own lgt2svg Bash and
PowerShell scripts.

5.8.1 Requirements

A recent version of Graphviz is required for generating diagrams in the final formats. It can be installed
using a Graphviz installer or e.g. the following per operating-system commands:

386 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

macOS - MacPorts

$ sudo port install graphviz

macOS - Homebrew

$ brew install graphviz

Ubuntu

$ sudo apt install graphviz

Windows - Chocolatey

> choco install graphviz

Installers

https://www.graphviz.org/download/

On Linux systems, use the distribution own package manager to install any missing command.

5.8.2 API documentation

This tool API documentation is available at:

../../docs/library_index.html#diagrams

For sample queries, please see the SCRIPT.txt file in the tool directory.

5.8.3 Loading

This tool can be loaded using the query:

| ?- logtalk_load(diagrams(loader)).

5.8.4 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(diagrams(tester)).

5.8. diagrams 387

https://www.graphviz.org/download/
../../docs/library_index.html#diagrams

The Logtalk Handbook, Release v3.61.0

5.8.5 Supported diagrams

The following entity diagrams are supported:

• entity diagrams showing entity public interfaces, entity inheritance relations, and entity predicate cross-
reference relations

• predicate cross-reference diagrams (between entities or within an entity)

• inheritance diagrams showing entity inheritance relations

• uses diagrams showing which entities use resources from other entities

The following library diagrams are supported:

• library loading diagrams showing which libraries load other libraries

• library dependency diagrams showing which libraries contain entities with references to entities defined
in other libraries

The following file diagrams are supported:

• file loading diagrams showing which files load or include other files

• file dependency diagrams showing which files contain entities with references to entities defined in other
files

File dependency diagrams are specially useful in revealing dependencies that are not represented in file
loading diagrams due to files being loaded indirectly by files external to the libraries being documented.

The following directory diagrams are supported:

• directory loading diagrams showing which directories contain files that load files in other directories

• directory dependency diagrams showing which directories contain entities with references to entities
defined in other directories

Comparing directory (or file) loading diagrams with directory (or file) dependency diagrams allows compar-
ing what is explicitly loaded with the actual directory (or file) dependencies, which are inferred from the
source code.

Library and directory dependency diagrams are specially useful for large applications where file diagrams
would be too large and complex to be useful, specially when combined with the zoom option to link to,
respectively, entity and file diagrams.

A utility object, diagrams, is provided for generating all supported diagrams in one step. This object provides
an interface common to all diagrams but note that some predicates that generate diagrams only make sense
for some types of diagrams. For best results and fine-grained customization of each diagram, the individual
diagram objects should be used with the intended set of options.

5.8.6 Graph elements

Limitations in both the graph language and UML forces the invention of a modeling language that can
represent all kinds of Logtalk entities and entity relations. Currently we use the following Graphviz DOT
shapes (libraries, entities, predicates, and files) and arrows (entity, predicate, and file relations):

• libraries
tab (lightsalmon)

• library loading and dependency relations
normal (arrow ending with a black triangle)

• objects (classes, instances, and prototypes)

388 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

box (rectangle, yellow for instances/classes and beige for prototypes)

• protocols
note (aqua marine rectangle with folded right-upper corners)

• categories
component (light cyan rectangle with two small rectangles intercepting the left side)

• modules
tab (plum rectangle with small tab at top)

• public predicates
box (springgreen)

• public, multifile, predicates
box (skyblue)

• protected predicates
box (yellow)

• private predicates
box (indianred)

• external predicates
box (beige)

• exported module predicates
box (springgreen)

• directories
tab (lightsalmon)

• directory loading and dependency relations
normal (arrow ending with a black triangle)

• files
box (pale turquoise rectangle)

• file loading and dependency relations
normal (arrow ending with a black triangle)

• specialization relation
onormal (arrow ending with a white triangle)

• instantiation relation
normal (arrow ending with a black triangle)

• extends relation
vee (arrow ending with a “v”)

• implements relation
dot (arrow ending with a black circle)

• imports relation
box (arrow ending with a black square)

• complements relation
obox (arrow ending with a white square)

• uses and use module relations
rdiamond (arrow ending with a black half diamond)

5.8. diagrams 389

The Logtalk Handbook, Release v3.61.0

• predicate calls
normal (arrow ending with a black triangle)

• dynamic predicate updates
diamond (arrow ending with a black diamond)

The library, directory, file, entity, and predicate nodes that are not part of the predicates, entities, files, or
libraries for which we are generating a diagram use a dashed border, a darker color, and are described as
external.

Note that all the elements above can have captions. See below the diagrams node_type_captions/1 and
relation_labels/1 output options.

5.8.7 Supported graph languages

Currently only the DOT graph language is supported (tested with Graphviz version 2.43 on macOS; visit the
http://www.graphviz.org/ website for more information). Some recent versions have a nasty regression in
the SVG exporter where text overflows the boxes that should contain it. Also, old stable versions such as
2.40.1 have a bug (fixed in the recent versions) that can result in very long edges.

The diagrams .dot files are created on the current directory by default. These files can be easily converted
into a printable format such as SVG, PDF, or Postscript. For example, using the dot command-line executable
we can simply type:

dot -Tpdf diagram.dot > diagram.pdf

This usually works fine for entity and predicate call cross-referencing diagrams. For directory and file dia-
grams, the fdp and circo command-line executables may produce better results. For example:

fdp -Tsvg diagram.dot > diagram.svg
circo -Tsvg diagram.dot > diagram.svg

It’s also worth to experiment with different layouts to find the one that produces the best results (see the
layout/1 option described below).

Some output formats such as SVG support tooltips and URL links, which can be used for showing e.g.
entity types, relation types, file paths, and for navigating to files and directories of files (libraries) or to API
documentation. See the relevant diagram options below in order to take advantage of these features (see
the discussion below on “linking diagrams”).

Sample helper scripts are provided for batch converting a directory of .dot files to .svg files:

• lgt2svg.sh for POSIX systems

• lgt2svg.ps1 for Windows systems

• lgt2svg.js and lgt2svg.bat for Windows systems (deprecated)

The scripts assume that the Graphviz command-line executables are available from the system path (the
default is the dot executable but the scripts accept a command-line option to select in alternative the circo,
fdp, or neato executables).

When generating diagrams for multiple libraries or directories, it’s possible to split a diagram with several
disconnected library or directory graphs using the ccomps command-line executable. For example:

ccomps -x -o subdiagram.dot diagram.dot

For more information on the DOT language and related tools see:

390 Chapter 5. Developer Tools

http://www.graphviz.org/

The Logtalk Handbook, Release v3.61.0

http://www.graphviz.org/

When using Windows, there are known issues with some Prolog compilers due to the internal representation
of paths. If you encounter problems with a specific backend Prolog compiler, try if possible to use another
supported backend Prolog compiler when generating diagrams.

For printing large diagrams, you will need to either use a tool to slice the diagram in page-sized pieces or,
preferably, use software capable of tiled printing (e.g. Adobe Reader). You can also hand-edit the generated
.dot files and play with settings such as aspect ratio for fine-tuning the diagrams layout.

5.8.8 Customization

A set of options are available to specify the details to include in the generated diagrams. For entity diagrams
the options are:

• layout(Layout)

diagram layout (one of the atoms {top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is bottom_to_top)

• title(Title)

diagram title (an atom; default is '')

• date(Boolean)

print current date and time (true or false; default is true)

• interface(Boolean)

print public predicates (true or false; default is true)

• file_labels(Boolean)

print file labels (true or false; default is true)

• file_extensions(Boolean)

print file name extensions (true or false; default is true)

• relation_labels(Boolean)

print entity relation labels (true or false; default is true)

• externals(Boolean)

print external nodes (true or false; default is true)

• node_type_captions(Boolean)

print node type captions (true or false; default is true)

• inheritance_relations(Boolean)

print inheritance relations (true or false; default is true for entity inheritance diagrams and false
for other entity diagrams)

• provide_relations(Boolean)

print provide relations (true or false; default is false)

• xref_relations(Boolean)

print predicate call cross-reference relations (true or false; default depends on the specific diagram)

• xref_calls(Boolean)

print predicate cross-reference calls (true or false; default depends on the specific diagram)

• output_directory(Directory)

directory for the .dot files (an atom; default is './')

5.8. diagrams 391

The Logtalk Handbook, Release v3.61.0

• exclude_directories(Directories)

list of directories to exclude (default is [])

• exclude_files(Files)

list of source files to exclude (default is [])

• exclude_libraries(Libraries)

list of libraries to exclude (default is [startup, scratch_directory])

• exclude_entities(Entities)

list of entities to exclude (default is [])

• path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

code and documenting URL prefixes for a path prefix used when generating cluster, library, directory,
file, and entity links (atoms; no default; can be specified multiple times)

• url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating cluster, library, file, and entity
links (atoms; no default)

• entity_url_suffix_target(Suffix, Target)

extension for entity documenting URLs (an atom; default is '.html') and target separating symbols
(an atom; default is '#')

• omit_path_prefixes(Prefixes)

omit common path prefixes when printing directory paths and when constructing URLs (a list of
atoms; default is a list with the user home directory)

• zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and entity nodes (true or false;
default is false)

• zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

In the particular case of cross-referencing diagrams, there is also the option:

• url_line_references(Host) syntax for the URL source file line part (an atom; possible values are
{github,gitlab,bitbucket}; default is github); when using this option, the CodeURLPrefix should be
a permanent link (i.e. it should include the commit SHA1)

For directory and file diagrams the options are:

• layout(Layout)

diagram layout (one of the atoms {top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is top_to_bottom)

• title(Title)

diagram title (an atom; default is '')

• date(Boolean)

print current date and time (true or false; default is true)

• directory_paths(Boolean)

print file directory paths (true or false; default is false)

• file_extensions(Boolean)

print file name extensions (true or false; default is true)

• path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

392 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

code and documenting URL prefixes for a path prefix used when generating cluster, directory, file, and
entity links (atoms; no default; can be specified multiple times)

• url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating cluster, library, file, and entity
links (atoms; no default)

• omit_path_prefixes(Prefixes)

omit common path prefixes when printing directory paths and when constructing URLs (a list of
atoms; default is a list with the user home directory)

• relation_labels(Boolean)

print entity relation labels (true or false; default is false)

• externals(Boolean)

print external nodes (true or false; default is true)

• node_type_captions(Boolean)

print node type captions (true or false; default is false)

• output_directory(Directory)

directory for the .dot files (an atom; default is './')

• exclude_directories(Directories)

list of directories to exclude (default is [])

• exclude_files(Files)

list of source files to exclude (default is [])

• zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and entity nodes (true or false;
default is false)

• zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

For library diagrams the options are:

• layout(Layout)

diagram layout (one of the atoms {top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is top_to_bottom)

• title(Title)

diagram title (an atom; default is '')

• date(Boolean)

print current date and time (true or false; default is true)

• directory_paths(Boolean)

print file directory paths (true or false; default is false)

• path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

code and documenting URL prefixes for a path prefix used when generating cluster, library, file, and
entity links (atoms; no default; can be specified multiple times)

• url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating cluster, library, file, and entity
links (atoms; no default)

• omit_path_prefixes(Prefixes)

5.8. diagrams 393

The Logtalk Handbook, Release v3.61.0

omit common path prefixes when printing directory paths and when constructing URLs (a list of
atoms; default is a list with the user home directory)

• relation_labels(Boolean)

print entity relation labels (true or false; default is false)

• externals(Boolean)

print external nodes (true or false; default is true)

• node_type_captions(Boolean)

print node type captions (true or false; default is false)

• output_directory(Directory)

directory for the .dot files (an atom; default is './')

• exclude_directories(Directories)

list of directories to exclude (default is [])

• exclude_files(Files)

list of source files to exclude (default is [])

• exclude_libraries(Libraries)

list of libraries to exclude (default is [startup, scratch_directory])

• zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and entity nodes (true or false;
default is false)

• zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

The option omit_path_prefixes(Prefixes) with a non-empty list of prefixes should preferably be used
together with the option directory_paths(true) when generating library or file diagrams that reference
external libraries or files. To confirm the exact default options used by each type of diagram, send the
default_options/1 message to the diagram object.

Be sure to set the source_data flag on before compiling the libraries or files for which you want to generated
diagrams.

Support for displaying Prolog modules and Prolog module files in diagrams of Logtalk applications:

• ECLiPSe
file diagrams don’t display module files

• SICStus Prolog
file diagrams don’t display module files

• SWI-Prolog
full support (uses the SWI-Prolog prolog_xref library)

• YAP
full support (uses the YAP prolog_xref library)

394 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.8.9 Linking diagrams

When using SVG output, it’s possible to generate diagrams that link to other diagrams, to API documentation,
and to source code repositories (to both files and directories).

For generating links between diagrams, use the zoom(true) option. This option allows (1) linking library
diagrams to entity diagrams to predicate cross-referencing diagrams and (2) linking directory diagrams to file
diagrams. The sub-diagrams are automatically generated. For example, using the predicates that generate
library diagrams will automatically also generate the entity and predicate cross-referencing diagrams.

To generate links to API documentation and source code repositories, use the options path_url_prefixes/3
(or url_prefixes/2 for simpler cases) and omit_path_prefixes/1. The idea is that the omit_path_prefixes/
1 option specifies local file prefixes that will be cut and replaced by the URL prefixes (which can be path prefix
specific when addressing multiple code repositories). To generate local file system URLs, define the empty
atom, '', as a prefix. As an example, consider the Logtalk library. Its source code is available from a GitHub
repository and its documentation is published in the Logtalk website. The relevant URLs in this case are:

• https://github.com/LogtalkDotOrg/logtalk3/tree/ (source code)

• https://logtalk.org/library/ (API documentation)

Git source code URLs should include the commit SHA1 to ensure that entity and predicate file line informa-
tion in the URLs remain valid if the code changes in later commits. Assuming a GitHub variable bound to the
SHA1 commit URL we want to reference, an inheritance diagram can be generated using the goal:

| ?- GitHub = 'https://github.com/LogtalkDotOrg/logtalk3/tree/...',
APIDocs = 'https://logtalk.org/library/',
logtalk_load(diagrams(loader)),
set_logtalk_flag(source_data, on),
logtalk_load(library(all_loader)),
inheritance_diagram::rlibrary(library, [

title('Logtalk library'),
node_type_captions(true),
zoom(true),
path_url_prefixes('$LOGTALKUSER/', GitHub, APIDocs),
path_url_prefixes('$LOGTALKHOME/', GitHub, APIDocs),
omit_path_prefixes(['$LOGTALKUSER/', '$LOGTALKHOME/', '$HOME/'])

]).

The two path_url_prefixes/3 options take care of source code and API documentation for entities loaded
either from the Logtalk installation directory (whose location is given by the LOGTALKHOME environment
variable) or from the Logtalk user directory (whose location is given by the LOGTALKUSER environment vari-
able). As we also don’t want any local operating-system paths to be exposed in the diagram, we use the
omit_path_prefixes/1 option to suppress those path prefixes, Note that all the paths and URLs must end
with a slash for proper handling.

See the SCRIPT.txt file in the tool directory for additional examples.

5.8. diagrams 395

https://github.com/LogtalkDotOrg/logtalk3/tree/
https://logtalk.org/library/

The Logtalk Handbook, Release v3.61.0

5.8.10 Creating diagrams for Prolog module applications

Currently limited to SWI-Prolog and YAP Prolog module applications due to the lack of a comprehensive
reflection API in other Prolog systems.

Simply load your Prolog module application and its dependencies and then use diagram entity, directory, or
file predicates. Library diagram predicates are not supported. See the SCRIPT.txt file in the tool directory
for some usage examples. Note that support for diagrams with links to API documentation is quite limited,
however, due to the lack of Prolog standards.

5.8.11 Creating diagrams for plain Prolog files

This tool can also be used to create predicate cross-referencing diagrams for plain Prolog files. For example,
if the Prolog file is named code.pl, simply define an object including its code:

:- object(code).
:- include('code.pl').

:- end_object.

Save the object to an e.g. code.lgt file in the same directory as the Prolog file and then load it and create
the diagram:

| ?- logtalk_load(code),
xref_diagram::entity(code).

An alternative is to use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook)]),
xref_diagram::entity(code).

5.8.12 Other notes

Generating complete diagrams requires that all referenced entities are loaded. When that is not the case,
notably when generating cross-referencing diagrams, missing entities can result in incomplete diagrams.

The zoom icons, zoom.png and zoom.svg have been designed by Xinh Studio:

https://www.iconfinder.com/xinhstudio

Currently, only the zoom.png file is used. A copy of this file must exist in any directory used for publishing
diagrams using it. The lgt2svg scripts take care of copying this file.

When generating diagrams in SVG format, a copy of the diagrams.css file must exist in any directory used
for publishing diagrams using it. The lgt2svg scripts also take care of copying this file.

The Graphviz command-line utilities, e.g. dot, are notorious for random crashes (segmentation faults usu-
ally), often requiring re-doing conversions from .dot files to other formats. A possible workaround is to
repeat the command until it completes without error. See for example the lgt2svg.sh script.

396 Chapter 5. Developer Tools

https://www.iconfinder.com/xinhstudio

The Logtalk Handbook, Release v3.61.0

5.9 doclet

This folder provides a simple tool for (re)generating documentation for a project. The tool defines a doclet
object that is expected to be extended by the user to specify a sequence of goals and a sequence of shell
commands that load the application and (re)generate its documentation.

Doclet source files are preferably named doclet.lgt (or doclet.logtalk) and the doclet object are usually
named after the application or library to be documented with a _doclet suffix. By using an initialization/1
directive to automatically send the update/0 message that generates the documentation upon doclet loading,
we can abstract the name of the doclet object. The usual query to load and run a doclet is therefore:

| ?- logtalk_load([doclet(loader), doclet]).

For usage examples see the sample_doclet.lgt, doclet1.lgt, zoom_doclet.lgt, and tools_doclet.lgt
source files.

5.9.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#doclet

For sample queries, please see the SCRIPT.txt file in the tool directory.

5.9.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(doclet(loader)).

5.9.3 Automating running doclets

You can use the scripts/logtalk_doclet.sh Bash shell script for automating running doclets. The script
expects the doclet source files to be named either doclet.lgt or doclet.logtalk. See the scripts/NOTES.md
file or the script man page for details.

5.9.4 Integration with the make tool

Loading this tool adds a definition for the logtalk_make_target_action/1 hook predicate for the target
documentation. The hook definition sends an update/0 message to each loaded doclet.

5.9. doclet 397

../../docs/library_index.html#doclet

The Logtalk Handbook, Release v3.61.0

5.10 help

This tool provides basic on-line help for Logtalk features and libraries when running in a limited set of
operating-systems. For help on the Logtalk compiler error and warning messages, see the tutor tool.

5.10.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#help

For sample queries, please see the SCRIPT.txt file in the tool directory.

5.10.2 Loading

| ?- logtalk_load(help(loader)).

5.10.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(help(tester)).

5.10.4 Supported operating-systems

Currently, support is limited to Linux, macOS, and Windows.

On Windows, the start command must be available. On Linux, the xdg-open command must be available.
On macOS, the command open is used.

This tool relies on the library portable operating-system access abstraction.

5.10.5 Usage

After loading the tool, use the query help::help to get started.

5.10.6 Experimental features

On POSIX systems, when using Ciao Prolog, ECLiPSe, LVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, or
XSB as the backend, apis/1 and handbook/0-1 predicates are made available. These predicates open inline,
respectively, the Texinfo versions of the Handbook and the APIs documentation. The optional argument is a
topic to search, which can be an atom, a predicate indicator, or a non-terminal indicator. Some examples:

| ?- help::handbook.

| ?- help::handbook(base64).

| ?- help::handbook(logtalk_load/2).

(continues on next page)

398 Chapter 5. Developer Tools

../../docs/library_index.html#help

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

| ?- help::apis.

| ?- help::apis(string_match/2).

| ?- help::apis(body_term//2).

When you finish consult the documentation and quit the info process, you will be back to the top-level
prompt (if you find that the top-level have scrolled from its last position, try to set your terminal terminfo to
xterm-256colour).

If you’re running Logtalk from a git clone of its repo, you will need to run the scripts/update_html_docs.
sh or scripts/update_html_docs.ps1 scripts to generate the APIs documentation .info file and also run
the manuals/sources/build_manuals.sh or manuals/sources/build_manuals.ps1 scripts to generated the
Handbook .info file. In alternative, you can download the .info files for the latest stable release from the
Logtalk website and save them to the docs and manuals directories.

The required info command is provided by the third-party texinfo package (tested with version 6.8). On
macOS, this package can be installed with either MacPorts:

$ sudo port install texinfo

Or using Homebrew:

$ brew install texinfo

On Linux systems, use the distribution own package manager to install the texinfo package. For example,
in Ubuntu systems:

$ sudo apt install info

5.10.7 Known issues

The open commands used to open documentation URLs drop the fragment part, thus preventing navigating
to the specified position on the documentation page.

ECLiPSe defines a help prefix operator that forces wrapping this atom between parenthesis when sending
messages to the tool. E.g. use (help)::help instead of help::help.

5.11 issue_creator

This is a complementary tool for the lgtunit tool for automatically creating bug report issues for failed tests
in GitHub or GitLab servers.

5.11. issue_creator 399

The Logtalk Handbook, Release v3.61.0

5.11.1 Requirements

This tool requires that the GitHub and GitLab CLIs be installed. For the installation instructions see:

• GitHub: https://cli.github.com

• GitLab: https://glab.readthedocs.io

5.11.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(issue_creator(loader)).

But in the most common usage scenario, this tool is automatically loaded by the logtalk_tester automation
script.

5.11.3 Usage

The logtalk_tester automation script accepts a -b option for automatically using this tool (see the script
man page for details). In the most simple case, this option possible values are github and gitlab. For
example:

$ logtalk_tester \
-p gnu \
-b github \
-s "/home/jdoe/foo/" \
-u https://github.com/jdoe/foo/tree/55aa900775befa135e0d5b48ea63098df8b97f5c/

The logtalk_tester script must be called from a git repo directory or one of its sub-directories, which is a
common setup in CI/CD pipelines. Moreover, prior to running the tests, the CLI must be used, if required, to
authenticate and login to the server where the bug report issues will be created:

• GitHub: gh auth login --hostname <string> --with-token < token.txt

• GitLab: glab auth login --hostname <string> --token <string>

The access token must ensure the necessary scopes that allow bug reports to be created. See the CLIs
documentation for details. Typically, the auth command is called from the CI/CD pipeline definition scripts.
However, depending on the CI/CD workflow, the authentication may be done implicitly.

The bug reports are created using by default the label bug and assigned to the author of the latest commit of
the git repo. The -b option can also be used to override the label with a comma separated set of labels. For
example, to use both bug and auto labels:

$ logtalk_tester \
-p gnu \
-b github:bug,auto \
-s "/home/jdoe/foo/" \
-u https://github.com/jdoe/foo/tree/55aa900775befa135e0d5b48ea63098df8b97f5c/

Note that the labels must be predefined in the issue tracker server for the bug report to be successfully
created.

The bug reports use Markdown formatting, which is the default in GitHub and GitLab issue trackers.

400 Chapter 5. Developer Tools

https://cli.github.com
https://glab.readthedocs.io

The Logtalk Handbook, Release v3.61.0

But reports are only created for non-flaky tests. The bug report title and labels are used to prevent creating
duplicated bug reports. Therefore, the same labels should be used for multiple runs of the same tests and
preserved when editing the bug reports.

There are cases where we may want to postpone or temporarily disable the automatic creation of bug reports.
E.g. a WIP branch that’s known to break multiple tests. A solution is to define a pull/merge request label,
e.g. NO_AUTO_BUG_REPORTS, that can then be checked by the CI/CD workflow. For example, we can test the
presence of that label to set a AUTO_BUG_REPORTS environment variable to either an empty string or a -b
option and use:

logtalk_tester.sh $AUTO_BUG_REPORTS -p ...

5.11.4 Known issues

GitLab creates CI/CD pipelines in a detached HEAD state. As a consequence, the bug reports always show
“Git branch: HEAD”.

This tool is in a beta stage of development. Your feedback is most appreciated.

5.12 lgtdoc

This is the default Logtalk documenting tool for generating API documentation for libraries and applications.
It uses the structural reflection API to extract and output in XML format relevant documentation about a
source file, a library or directory of source files, or all loaded source files. The tool predicates accept several
options for generating the XML files, including the output directory.

The lgtdoc/xml directory contains several ready to use Bash and PowerShell scripts for converting the XML
documenting files into final formats including (X)HTML, PDF, Markdown, and reStructuredText (for use with
Sphinx), or plain text files. The scripts are described in their man pages and made available in the system
path by default. See also the lgtdoc/xml/NOTES.md for details, including the required third-party software.

5.12.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#lgtdoc

5.12.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(lgtdoc(loader)).

5.12. lgtdoc 401

../../docs/library_index.html#lgtdoc

The Logtalk Handbook, Release v3.61.0

5.12.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(lgtdoc(tester)).

5.12.4 Documenting source code

For information on documenting your source code, notably on documenting directives, consult the docu-
menting section of the User Manual:

../../manuals/userman/documenting.html

Extracting documenting information from your source code using with this tool requires compiling the source
files using the source_data(on) compiler flag. For example:

| ?- logtalk_load(source_file, [source_data(on)]).

Usually, this flag is set for all application source files in the corresponding loader file. In alternative, you may
also turn on the source_data flag globally by typing:

| ?- set_logtalk_flag(source_data, on).

The tool API allows generating documentation for libraries, directories, and files, complemented with library,
directory, entity, and predicate indexes. Note that the source files to be documented must be loaded prior to
using this tool predicates to generate the documentation.

5.12.5 Generating documentation

For a simple application, assuming a library alias is defined for it (e.g. my_app), and at the top-level inter-
preter, we can generate the application documentation by typing:

| ?- {my_app(loader)}.
...

| ?- {lgtdoc(loader)}.
...

| ?- lgtdoc::library(my_app).
...

By default, the documenting XML files are created in a xml_docs directory in the current working directory.
But usually all documenting files are collected for both the application and the libraries it uses in a com-
mon directory so that all documentation links resolved properly. The lgtdoc predicates can take a list of
options to customize the generated XML documenting files. See the remarks section in the lgtdocp protocol
documentation for details on the available options.

After generating the XML documenting files, these can be easily converted into final formats using the pro-
vided scripts. For example, assuming that we want to generate HTML documentation:

$ cd xml_docs
$ lgt2html -t "My app"

To generate the documentation in Sphinx format instead (as used by Logtalk itself for its APIs):

402 Chapter 5. Developer Tools

../../manuals/userman/documenting.html
https://logtalk.org/docs/library_index.html#lgtdoc

The Logtalk Handbook, Release v3.61.0

$ cd xml_docs
$ lgt2rst -s -- -q -p "Application name" -a "Author name" -v "Version X.YZ.P"
$ make html

In this case, the generated documentation will be in the xml_docs/_build/html/ directory. See the scripts
man pages or call them using the -h option to learn more about their supported options.

For more complex applications, you can use the doclet tool to define a doclet to automate all the steps
required to generate documentation. The doclet message that triggers the process can also be sent automat-
ically when the make tool is used with the documentation target.

5.12.6 Documentation linter checks

When the lgtdoc_missing_directives flag is set to warning (its usual default value), the lgtdoc tool prints
warnings on missing entity info/1 directives and missing predicate info/2 and mode/2 directives.

When the lgtdoc_missing_info_key flag is set to warning (its usual default value), the lgtdoc tool
prints warnings on entity info/1 directive and predicate info/2 directive missing de facto required keys
(e.g comment, parameters or parnames for parametric entities, arguments or argnames for predicates/non-
terminals with arguments).

When the lgtdoc_invalid_dates flag is set to warning (its usual default value), the lgtdoc tool prints
warnings on invalid dates (including dates in the future) in info/1 directives.

When the lgtdoc_non_standard_exceptions flag is set to warning (its usual default value), the lgtdoc tool
prints warnings on non-standard exceptions. This linter check is particularly effective in detecting typos
when specifying standard exceptions.

When the lgtdoc_missing_punctuation flag is set to warning (its usual default value), the lgtdoc tool prints
warnings on missing ending periods (full stops), exclamation marks, or question marks in info/1-2 directives
(in comments, remarks, parameter descriptions, and argument descriptions).

Set a flag value to silent to turn off the corresponding linter warnings.

5.13 lgtunit

The lgtunit tool provides testing support for Logtalk. It can also be used for testing plain Prolog code and
Prolog module code.

This tool is inspired by the xUnit frameworks architecture and by the works of Joachim Schimpf (ECLiPSe
library test_util) and Jan Wielemaker (SWI-Prolog plunit package).

Tests are defined in objects, which represent a test set or test suite. In simple cases, we usually define a
single object containing the tests. But it is also possible to use parametric test objects or multiple objects
defining parametrizable tests or test subsets for testing more complex units and facilitate tests maintenance.
Parametric test objects are specially useful to test multiple implementations of the same protocol using a
single set of tests by passing the implementation object as a parameter value.

5.13. lgtunit 403

The Logtalk Handbook, Release v3.61.0

5.13.1 Main files

The lgtunit.lgt source file implements a framework for defining and running unit tests in Logtalk. The
lgtunit_messages.lgt source file defines the default translations for the messages printed when running
unit tests. These messages can be intercepted to customize output, e.g. to make it less verbose, or for
integration with e.g. GUI IDEs and continuous integration servers.

Other files part of this tool provide support for alternative output formats of test results and are discussed
below.

5.13.2 API documentation

This tool API documentation is available at:

../../docs/library_index.html#lgtunit

5.13.3 Loading

This tool can be loaded using the query:

| ?- logtalk_load(lgtunit(loader)).

5.13.4 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(lgtunit(tester)).

5.13.5 Writing and loading tests

In order to write your own unit tests, define objects extending the lgtunit object. You may start by copying
the tests-sample.lgt file (at the root of the Logtalk distribution) to a tests.lgt file in your project directory
and edit it to add your tests:

:- object(tests,
extends(lgtunit)).

% test definitions
...

:- end_object.

The section on test dialects below describes in detail how to write tests. See the tests top directory for
examples of actual unit tests. Other sources of examples are the library and examples directories.

The tests must be term-expanded by the lgtunit object by compiling the source files defining the test objects
using the option hook(lgtunit). For example:

| ?- logtalk_load(tests, [hook(lgtunit)]).

404 Chapter 5. Developer Tools

../../docs/library_index.html#lgtunit

The Logtalk Handbook, Release v3.61.0

As the term-expansion mechanism applies to all the contents of a source file, the source files defining the
test objects should preferably not contain entities other than the test objects. Additional code necessary for
the tests should go to separate files. In general, the tests themselves can be compiled in optimized mode.
Assuming that’s the case, also use the optimize(on) compiler option for faster tests execution.

The term-expansion performed by the lgtunit object sets the test object source_data flag to on and the
context_switching_calls flag to allow for code coverage and debugging support. But these settings can
always be overriden in the test objects.

The tester-sample.lgt file (at the root of the Logtalk distribution) exemplifies how to compile and load
lgtunit tool, the source code under testing, the unit tests, and for automatically run all the tests after
loading:

:- initialization((
% minimize compilation reports to the essential ones (errors and warnings)
set_logtalk_flag(report, warnings),
% load any necessary library files for your application; for example
logtalk_load(basic_types(loader)),
% load the unit test tool
logtalk_load(lgtunit(loader)),
% load your application files (e.g. "source.lgt") enabling support for
% code coverage, which requires compilation in debug mode and collecting
% source data information; if code coverage is not required, remove the
% "debug(on)" option for faster execution
logtalk_load(source, [source_data(on), debug(on)]),
% compile the unit tests file expanding it using "lgtunit" as the hook
% object to preprocess the tests; if you have failing tests, add the
% option debug(on) to debug them
logtalk_load(tests, [hook(lgtunit)]),
% run all the unit tests; assuming your tests object is named "tests"
tests::run

)).

You may copy this sample file to a tester.lgt file in your project directory and edit it to load your project
and tests files (the logtalk_tester testing automation script defaults to look for test driver files named
tester.lgt or tester.logtalk).

Debugged test sets should preferably be compiled in optimal mode, specially when containing deterministic
tests and when using the utility benchmarking predicates.

5.13.6 Running unit tests

Assuming that your test object is named tests, after compiling and loading its source file, you can run the
tests by typing:

| ?- tests::run.

Usually, this goal is called automatically from an initialization/1 directive in a tester.lgt loader file. You
can also run a single test (or a list of tests) using the run/1 predicate:

| ?- tests::run(test_identifier).

When testing complex units, it is often desirable to split the tests between several test objects or using
parametric test objects to be able to run the same tests using different parameters (e.g. different data sets or
alternative implementations of the same protocol). In this case, you can run all test subsets using the goal:

5.13. lgtunit 405

The Logtalk Handbook, Release v3.61.0

| ?- lgtunit::run_test_sets([test_set_1, test_set_2, ...]).

where the run_test_sets/1 predicate argument is a list of two or more test object identifiers. This predicate
makes possible to get a single code coverage report that takes into account all the tests.

It’s also possible to automatically run loaded tests when using the make tool by calling the goal that runs the
tests from a definition of the hook predicate logtalk_make_target_action/1. For example, by adding to the
tests tester.lgt driver file the following code:

% integrate the tests with logtalk_make/1
:- multifile(logtalk_make_target_action/1).
:- dynamic(logtalk_make_target_action/1).

logtalk_make_target_action(check) :-
tests::run.

Alternatively, you can define the predicate make/1 inside the test set object. For example:

:- object(tests, extends(lgtunit)).

make(check).
...

:- end_object.

This clause will cause all tests to be run when calling the logtalk_make/1 predicate with the target check
(or its top-level shortcut, {?}). The other possible target is all (with top-level shortcut {*}).

Note that you can have multiple test driver files. For example, one driver file that runs the tests collecting
code coverage data and a quicker driver file that skips code coverage and compiles the code to be tested in
optimized mode.

5.13.7 Parametric test objects

Parameterized unit tests can be easily defined by using parametric test objects. A typical example is testing
multiple implementations of the same protocol. In this case, we can use a parameter to pass the specific
implementation being tested. For example, assume that we want to run the same set of tests for the library
random_protocol protocol. We can write:

:- object(tests(_RandomObject_),
extends(lgtunit)).

:- uses(_RandomObject_, [
random/1, between/3, member/2,
...

]).

test(between_3_in_interval) :-
between(1, 10, Random),
1 =< Random, Random =< 10.

...

:- end_object.

406 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

We can then test a specific implementation by instantiating the parameter. For example:

| ?- tests(fast_random)::run.

Or use the lgtunit::run_test_sets/1 predicate to test all the implementations:

| ?- lgtunit::run_test_sets([
tests(backend_random),
tests(fast_random),
tests(random)

]).

5.13.8 Test dialects

Multiple test dialects are supported by default. See the next section on how to define your own test dialects.
In all dialects, a ground callable term, usually an atom, is used to uniquely identify a test. This simplifies
reporting failed tests and running tests selectively. An error message is printed if invalid or duplicated test
identifiers are found. These errors must be corrected otherwise the reported test results can be misleading.
Ideally, tests should have descriptive names that clearly state the purpose of the test and what is being tested.

Unit tests can be written using any of the following predefined dialects:

test(Test) :- Goal.

This is the most simple dialect, allowing the specification of tests that are expected to succeed. The argument
of the test/1 predicate is the test identifier, which must be unique. A more versatile dialect is:

succeeds(Test) :- Goal.
deterministic(Test) :- Goal.
fails(Test) :- Goal.
throws(Test, Ball) :- Goal.
throws(Test, Balls) :- Goal.

This is a straightforward dialect. For succeeds/1 tests, Goal is expected to succeed. For deterministic/1
tests, Goal is expected to succeed once without leaving a choice-point. For fails/1 tests, Goal is expected to
fail. For throws/2 tests, Goal is expected to throw the exception term Ball or one of the exception terms in
the list Balls. The specified exception must subsume the actual exception for the test to succeed.

An alternative test dialect that can be used with more expressive power is:

test(Test, Outcome) :- Goal.

The possible values of the outcome argument are:

• true

The test is expected to succeed.

• true(Assertion)

The test is expected to succeed and satisfy the Assertion goal.

• deterministic

The test is expected to succeed once without leaving a choice-point.

• deterministic(Assertion)

The test is expected to succeed once without leaving a choice-point and satisfy the Assertion goal.

• subsumes(Expected, Result)

5.13. lgtunit 407

The Logtalk Handbook, Release v3.61.0

The test is expected to succeed binding Result to a term that is subsumed by the Expected term.

• variant(Term1, Term2)

The test is expected to succeed binding Term1 to a term that is a variant of the Term2 term.

• exists(Assertion)

A solution exists for the test goal that satisfies the Assertion goal.

• all(Assertion)

All test goal solutions satisfy the Assertion goal.

• fail

The test is expected to fail.

• false

The test is expected to fail.

• error(Error)

The test is expected to throw the exception term error(ActualError, _) where ActualError is
subsumed Error.

• errors(Errors)

The test is expected to throw an exception term error(ActualError, _) where ActualError is
subsumed by an element of the list Errors.

• ball(Ball)

The test is expected to throw the exception term ActualBall where ActualBall is subsumed Ball.

• balls(Balls)

The test is expected to throw an exception term ActualBall where ActualBall is subsumed by an
element of the list Balls.

In the case of the true(Assertion), deterministic(Assertion), and all(Assertion) outcomes, a message
that includes the assertion goal is printed for assertion failures and errors to help to debug failed unit tests.
Same for the subsumes(Expected, Result) and variant(Term1, Term2) assertions. Note that this message
is only printed when the test goal succeeds as its failure will prevent the assertion goal from being called.
This allows distinguishing between test goal failure and assertion failure.

Note that the all(Assertion) outcome simplifies pinpointing which test goal solution failed the assertion.
See also the section below on testing non-deterministic predicates.

The fail and false outcomes are better reserved to cases where there is a single test goal. With multiple
test goals, the test will succeed when any of those goals fail.

Some tests may require individual condition, setup, or cleanup goals. In this case, the following alternative
test dialect can be used:

test(Test, Outcome, Options) :- Goal.

The currently supported options are (non-recognized options are ignored):

• condition(Goal)

Condition for deciding if the test should be run or skipped (default goal is true).

• setup(Goal)

Setup goal for the test (default goal is true).

• cleanup(Goal)

Cleanup goal for the test (default goal is true).

• note(Term)

408 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

Annotation to print (between parenthesis by default) after the test result (default is ''); the
annotation term can share variables with the test goal, which can be used to pass additional
information about the test result.

Also supported is QuickCheck testing where random tests are automatically generated and run given a
predicate mode template with type information for each argument (see the section below for more details):

quick_check(Test, Template, Options).
quick_check(Test, Template).

The valid options are the same as for the test/3 dialect plus all the supported QuickCheck specific options
(see the QuickCheck section below for details).

For examples of how to write unit tests, check the tests folder or the testing example in the examples
folder in the Logtalk distribution. Most of the provided examples also include unit tests, some of them with
code coverage.

5.13.9 User-defined test dialects

Additional test dialects can be easily defined by extending the lgtunit object and by term-expanding the
new dialect into one of the default dialects. As an example, suppose that you want a dialect where you can
simply write a file with tests defined by clauses using the format:

test_identifier :-
test_goal.

First, we define an expansion for this file into a test object:

:- object(simple_dialect,
implements(expanding)).

term_expansion(begin_of_file, [(:- object(tests,extends(lgtunit)))]).
term_expansion((Head :- Body), [test(Head) :- Body]).
term_expansion(end_of_file, [(:- end_object)]).

:- end_object.

Then we can use this hook object to expand and run tests written in this dialect by using a tester.lgt driver
file with contents such as:

:- initialization((
set_logtalk_flag(report, warnings),
logtalk_load(lgtunit(loader)),
logtalk_load(library(hook_flows_loader)),
logtalk_load(simple_dialect),
logtalk_load(tests, [hook(hook_pipeline([simple_dialect,lgtunit]))]),
tests::run

)).

The hook pipeline first applies our simple_dialect expansion followed by the default lgtunit expansion.
This solution allows other hook objects (e.g. required by the code being tested) to also be used by updating
the pipeline.

5.13. lgtunit 409

The Logtalk Handbook, Release v3.61.0

5.13.10 QuickCheck

QuickCheck was originally developed for Haskell. Implementations for several other programming languages
soon followed. QuickCheck provides support for property-based testing. The idea is to express properties
that predicates must comply with and automatically generate tests for those properties. The lgtunit tool
supports both quick_check/2-3 test dialects, as described above, and quick_check/1-3 public predicates for
interactive use:

quick_check(Template, Result, Options).
quick_check(Template, Options).
quick_check(Template).

The following options are supported:

• n/1: number of random tests that will be generated and run (default is 100).

• s/1: maximum number of shrink operations when a counter-example is found (default is 64).

• ec/1: boolean option deciding if type edge cases are tested before generating random tests (default is
true).

• rs/1: starting seed to be used when generating the random tests (no default).

• pc/1: pre-condition closure for generated tests (extended with the test arguments; no default).

• l/1: label closure for classifying the generated tests (extended with the test arguments plus the label
argument; no default).

• v/1: boolean option for verbose reporting of generated random tests (default is false).

• pb/2: progress bar option for executed random tests when the verbose option is false (first argument
is a boolean, default is false; second argument is the tick number, a positive integer).

The quick_check/1 predicate uses the default option values. The quick_check/1-2 predicates print the test
results and are thus better reserved for testing at the top-level interpreter. The quick_check/3 predicate
returns results in reified form:

• passed(SequenceSeed, Discarded, Labels)

• failed(Goal, SequenceSeed, TestSeed)

• error(Error, Goal, SequenceSeed, TestSeed)

• broken(Why, Culprit)

The broken(Why, Culprit) result only occurs when the user-defined testing setup is broken. For example,
a non-callable template (e.g. a non-existing predicate), an invalid option, a problem with the pre-condition
closure or with the label closure (e.g. a pre-condition that always fails or a label that fails to classify a
generated test), or errors/failures when generating tests (e.g. due to an unknown type being used in the
template or a broken custom type arbitrary value generator).

The Goal argument is the random test that failed.

The SequenceSeed argument is the starting seed used to generate the sequence of random tests. The TestSeed
is the seed used to generate the test that failed. Both seems should be regarded as opaque terms. When the
test seed equal to the sequence seed, this means means that the failure or error occurred while using only
type edge cases. See below how to use the seeds when testing bug fixes.

The Discarded argument returns the number of generated tests that were discarded for failing to comply a
pre-condition specified using the pc/1 option. This option is specially useful when constraining or enforcing
a relation between the generated arguments and is often used as an alternative to define a custom type. For
example, if we define the following predicate:

410 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

condition(I) :-
between(0, 127, I).

we can then use it to filter the generated tests:

| ?- lgtunit::quick_check(integer(+byte), [pc(condition)]).
% 100 random tests passed, 94 discarded
% starting seed: seed(416,18610,17023)
yes

The Labels argument returns a list of pairs Label-N where N is the number of generated tests that are
classified as Label by a closure specified using the l/1 option. For example, assuming the following predicate
definition:

label(I, Label) :-
(I mod 2 =:= 0 ->

Label = even
; Label = odd
).

we can try:

| ?- lgtunit::quick_check(integer(+byte), [l(label), n(10000)]).
% 10000 random tests passed, 0 discarded
% starting seed: seed(25513,20881,16407)
% even: 5037/10000 (50.370000%)
% odd: 4963/10000 (49.630000%)
yes

The label statistics are key to verify that the generated tests provide the necessary coverage. The labelling
predicates can return a single test label or a list of test labels. Labels should be ground and are typically
atoms. To examine the generated tests themselves, you can use the verbose option, v/1. For example:

| ?- lgtunit::quick_check(integer(+integer), [v(true), n(7), pc([I]>>(I>5))]).
% Discarded: integer(0)
% Passed: integer(786)
% Passed: integer(590)
% Passed: integer(165)
% Discarded: integer(-412)
% Passed: integer(440)
% Discarded: integer(-199)
% Passed: integer(588)
% Discarded: integer(-852)
% Discarded: integer(-214)
% Passed: integer(196)
% Passed: integer(353)
% 7 random tests passed, 5 discarded
% starting seed: seed(23671,3853,29824)
yes

When a counter-example is found, the verbose option also prints the shrink steps. For example:

| ?- lgtunit::quick_check(atom(+atomic), [v(true), ec(false)]).
% Passed: atom('dyO=Xv_MX-3b/U4KH U')

(continues on next page)

5.13. lgtunit 411

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

* Failure: atom(-198)
* Shrinked: atom(-99)
* Shrinked: atom(-49)
* Shrinked: atom(-24)
* Shrinked: atom(-12)
* Shrinked: atom(-6)
* Shrinked: atom(-3)
* Shrinked: atom(-1)
* Shrinked: atom(0)
* quick check test failure (at test 2 after 8 shrinks):
* atom(0)
* starting seed: seed(3172,9814,20125)
* test seed: seed(7035,19506,18186)
no

The template can be a (::)/2, (<<)/2, or (:)/2 qualified callable term. When the template is an unqualified
callable term, it will be used to construct a goal to be called in the context of the sender using the (<<)/2
debugging control construct. Another simple example by passing a template that will trigger a failed test (as
the random::random/1 predicate always returns non-negative floats):

| ?- lgtunit::quick_check(random::random(-negative_float)).
* quick check test failure (at test 1 after 0 shrinks):
* random::random(0.09230089279334841)
* starting seed: seed(3172,9814,20125)
* test seed: seed(3172,9814,20125)
no

When QuickCheck exposes a bug in the tested code, we can use the reported counter-example to help
diagnose it and fix it. As tests are randomly generated, we can use the starting seed reported with the
counter-example to confirm the bug fix by calling the quick_check/2-3 predicates with the rs(Seed) option.
For example, assume the following broken predicate definition:

every_other([], []).
every_other([_, X| L], [X | R]) :-

every_other(L, R).

The predicate is supposed to construct a list by taking every other element of an input list. Cursory testing
may fail to notice the bug:

| ?- every_other([1,2,3,4,5,6], List).
List = [2, 4, 6]
yes

But QuickCheck will report a bug with lists with an odd number of elements with a simple property that
verifies that the predicate always succeed and returns a list of integers:

| ?- lgtunit::quick_check(every_other(+list(integer), -list(integer))).
* quick check test failure (at test 2 after 0 shrinks):
* every_other([0],A)
* starting seed: seed(3172,9814,20125)
* test seed: seed(3172,9814,20125)
no

We could fix this particular bug by rewriting the predicate:

412 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

every_other([], []).
every_other([H| T], L) :-

every_other(T, H, L).

every_other([], X, [X]).
every_other([_| T], X, [X| L]) :-

every_other(T, L).

By retesting with the same test seed that uncovered the bug, the same random test that found the bug will
be generated and run again:

| ?- lgtunit::quick_check(
every_other(+list(integer), -list(integer)),
[rs(seed(3172,9814,20125))]

).
% 100 random tests passed, 0 discarded
% starting seed: seed(3172,9814,20125)
yes

Still, after verifying the bug fix, is also a good idea to re-run the tests using the sequence seed instead as bug
fixes sometimes cause regressions elsewhere.

When retesting using the logtalk_tester automation script, the starting seed can be set using the -r option.
For example:

$ logtalk_tester -r "seed(3172,9814,20125)"

We could now move to other properties that the predicate should comply (e.g. all elements in the out-
put list being present in the input list). Often, both traditional unit tests and QuickCheck tests are used,
complementing each other to ensure the required code coverage.

Another example using a Prolog module predicate:

| ?- lgtunit::quick_check(
pairs:pairs_keys_values(

+list(pair(atom,integer)),
-list(atom),
-list(integer)

)
).

% 100 random tests passed, 0 discarded
% starting seed: seed(3172,9814,20125)
yes

As illustrated by the examples above, properties are expressed using predicates. In the most simple cases,
that can be the predicate that we are testing itself. But, in general, it will be an auxiliary predicate calling
the predicate or predicates being tested and checking properties that the results must comply with.

The QuickCheck test dialects and predicates take as argument the mode template for a property, generate
random values for each input argument based on the type information, and check each output argument.
For common types, the implementation tries first (by default) common edge cases (e.g. empty atom, empty
list, or zero) before generating arbitrary values. When the output arguments check fails, the QuickCheck
implementation tries (by default) up to 64 shrink operations of the counter-example to report a simpler case
to help debugging the failed test. Edge cases, generating of arbitrary terms, and shrinking terms make use
of the library arbitrary category via the type object (both entities can be extended by the user by defining
clauses for multifile predicates).

5.13. lgtunit 413

The Logtalk Handbook, Release v3.61.0

The mode template syntax is the same used in the info/2 predicate directives with an additional notation,
{}/1, for passing argument values as-is instead of generating random values for these arguments. For ex-
ample, assume that we want to verify the type::valid/2 predicate, which takes as first argument a type.
Randomly generating random types would be cumbersome at best but the main problem is that we need to
generate random values for the second argument according to the first argument. Using the {}/1 notation
we can solve this problem for any specific type, e.g. integer, by writing:

| ?- lgtunit::quick_check(type::valid({integer}, +integer)).

We can also test all (ground, i.e. non-parametric) types with arbitrary value generators by writing:

| ?- forall(
(type::type(Type), ground(Type), type::arbitrary(Type)),
lgtunit::quick_check(type::valid({Type}, +Type))

).

You can find the list of the basic supported types for using in the template in the API documentation for
the library entities type and arbitrary. Note that other library entities, including third-party or your own,
can contribute with additional type definitions as both type and arbitrary entities are user extensible by
defining clauses for their multifile predicates.

The user can define new types to use in the property mode templates to use with its QuickCheck tests
by defining clauses for the type library object and the arbitrary library category multifile predicates.
QuickCheck will use the later to generate arbitrary input arguments and the former to verify output ar-
guments. As a toy example, assume that the property mode template have an argument of type bit with
possible values 0 and 1. We would then need to define:

:- multifile(type::type/1).
type::type(bit).

:- multifile(type::check/2).
type::check(bit, Term) :-

once((Term == 0; Term == 1)).

:- multifile(arbitrary::arbitrary/1).
arbitrary::arbitrary(bit).

:- multifile(arbitrary::arbitrary/2).
arbitrary::arbitrary(bit, Arbitrary) :-

random::member(Arbitrary, [0, 1]).

5.13.11 Skipping tests

A test object can define the condition/0 predicate (which defaults to true) to test if some necessary condition
for running the tests holds. The tests are skipped if the call to this predicate fails or generates an error.

Individual tests that for some reason should be unconditionally skipped can have the test clause head prefixed
with the (-)/1 operator. For example:

- test(not_yet_ready) :-
...

In this case, it’s a good idea to use the test/3 dialect with a note/1 option that briefly explains why the test
is being skipped. For example:

414 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

- test(xyz_reset, true, ['Feature xyz reset not yet implemented']) :-
...

The number of skipped tests is reported together with the numbers of passed and failed tests. To skip a test
depending on some condition, use the test/3 dialect and the condition/1 option. For example:

test(test_id, true, [condition(current_prolog_flag(bounded,true))) :-
...

The conditional compilation directives can also be used in alternative but note that in this case there will be
no report on the number of skipped tests.

5.13.12 Checking test goal results

Checking test goal results can be performed using the test/2-3 supported outcomes such as
true(Assertion) and deterministic(Assertion). For example:

test(compare_3_order_less, deterministic(Order == (<))) :-
compare(Order, 1, 2).

For the other test dialects, checking test goal results can be performed by calling the assertion/1-2 utility
predicates or by writing the checking goals directly in the test body. For example:

test(compare_3_order_less) :-
compare(Order, 1, 2),
^^assertion(Order == (<)).

or:

succeeds(compare_3_order_less) :-
compare(Order, 1, 2),
Order == (<).

Using assertions is, however, preferable to directly check test results in the test body as it facilitates debugging
by printing the unexpected results when the assertions fail.

The assertion/1-2 utility predicates are also useful for the test/2-3 dialects when we want to check multi-
ple assertions in the same test. For example:

test(dictionary_clone_4_01, true) :-
as_dictionary([], Dictionary),
clone(Dictionary, DictionaryPairs, Clone, ClonePairs),
empty(Clone),
^^assertion(original_pairs, DictionaryPairs == []),
^^assertion(clone_pairs, ClonePairs == []).

Ground results can be compared using the standard ==/2 term equality built-in predicate. Non-ground results
can be compared using the variant/2 predicate provided by lgtunit. The standard subsumes_term/2 built-
in predicate can be used when testing a compound term structure while abstracting some of its arguments.
Floating-point numbers can be compared using the =~=/2, approximately_equal/3, essentially_equal/3,
and tolerance_equal/4 predicates provided by lgtunit. Using the =/2 term unification built-in predicate
is almost always an error as it would mask test goals failing to bind output arguments. The lgtunit tool
implements a linter check for the use of unification goals in test outcome assertions. In the rare cases that

5.13. lgtunit 415

The Logtalk Handbook, Release v3.61.0

a unification goal is intended, wrapping the (=)/2 goal using the {}/1 control construct avoids the linter
warning.

5.13.13 Testing local predicates

The (<<)/2 debugging control construct can be used to access and test object local predicates (i.e. predicates
without a scope directive). In this case, make sure that the context_switching_calls compiler flag is set to
allow for those objects. This is seldom required, however, as local predicates are usually auxiliary predicates
called by public predicates and thus tested when testing those public predicates. The code coverage support
can pinpoint any local predicate clause that is not being exercised by the tests.

5.13.14 Testing non-deterministic predicates

For testing non-deterministic predicates (with a finite and manageable number of solutions), you can wrap
the test goal using the standard findall/3 predicate to collect all solutions and check against the list of
expected solutions. When the expected solutions are a set, use in alternative the standard setof/3 predicate.

If you want to check that all solutions of a non-deterministic predicate satisfy an assertion, use the test/2
or test/3 test dialect with the all(Assertion) outcome. For example:

test(atom_list, all(atom(Item))) :-
member(Item, [a, b, c]).

See also the next section on testing generators.

If you want to check that a solution exists for a non-deterministic predicate that satisfies an assertion, use
the test/2 or test/3 test dialect with the exists(Assertion) outcome. For example:

test(at_least_one_atom, exists(atom(Item))) :-
member(Item, [1, foo(2), 3.14, abc, 42]).

5.13.15 Testing generators

To test all solutions of a predicate that acts as a generator, we can use either the all/1 outcome or the
forall/2 predicate as the test goal with the assertion/2 predicate called to report details on any solution
that fails the test. For example:

test(test_solution_generator, all(test(X,Y,Z))) :-
generator(X, Y, Z).

or:

:- uses(lgtunit, [assertion/2]).
...

test(test_solution_generator_2) :-
forall(

generator(X, Y, Z),
assertion(generator(X), test(X,Y,Z))

).

416 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

While using the all/1 outcome results in a more compact test definition, using the forall/2 predicate allows
customizing the assertion description. In the example above, we use the generator(X) description instead
of the test(X,Y,Z) description implicit when we use the all/1 outcome.

5.13.16 Testing input/output predicates

Extensive support for testing input/output predicates is provided, based on similar support found on the
Prolog conformance testing framework written by Péter Szabó and Péter Szeredi.

Two sets of predicates are provided, one for testing text input/output and one for testing binary input/output.
In both cases, temporary files (possibly referenced by a user-defined alias) are used. The predicates allow
setting, checking, and cleaning text/binary input/output.

As an example of testing an input predicate, consider the standard get_char/1 predicate. This predicate
reads a single character (atom) from the current input stream. Some test for basic functionality could be:

test(get_char_1_01, true(Char == 'q')) :-
^^set_text_input('qwerty'),
get_char(Char).

test(get_char_1_02, true(Assertion)) :-
^^set_text_input('qwerty'),
get_char(_Char),
^^text_input_assertion('werty', Assertion).

As you can see in the above example, the testing pattern consist on setting the input for the predicate being
tested, calling it, and then checking the results. It is also possible to work with streams other than the current
input/output streams by using the lgtunit predicate variants that take a stream as argument. For example,
when testing the standard get_char/2 predicate, we could write:

test(get_char_2_01, true(Char == 'q')) :-
^^set_text_input(my_alias, 'qwerty'),
get_char(my_alias, Char).

test(get_char_2_02, true(Assertion)) :-
^^set_text_input(my_alias, 'qwerty'),
get_char(my_alias, _Char),
^^text_input_assertion(my_alias, 'werty', Assertion).

Testing output predicates follows the same pattern by using instead the set_text_output/1-2 and
text_output_assertion/2-3 predicates. For testing binary input/output predicates, equivalent testing pred-
icates are provided. There is also a small set of helper predicates for dealing with stream handles and stream
positions. For testing with files instead of streams, testing predicates are provided that allow creating text
and binary files with given contents and check text and binary files for expected contents.

For more practical examples, check the included tests for Prolog conformance of standard input/output
predicates.

5.13. lgtunit 417

The Logtalk Handbook, Release v3.61.0

5.13.17 Suppressing tested predicates output

Sometimes predicates being tested output text or binary data that at best clutters testing logs and at worse
can interfere with parsing of test logs. If that output itself is not under testing, you can suppress it by using
the goals ^^suppress_text_output or ^^suppress_binary_output at the beginning of the tests. For example:

test(proxies_04, true(Color == yellow)) :-
^^suppress_text_output,
{circle('#2', Color)}::print.

Output of expected warnings can be suppressed by turning off the corresponding linter flags. In this case, it
is advisable to restrict the scope of the flag value changes as much as possible.

Output of expected compiler errors can be suppressed by defining suitable clauses for the
logtalk::message_hook/4 hook predicate. For example:

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

% ignore expected domain error
logtalk::message_hook(compiler_error(_,_,error(domain_error(foo,bar),_)), error, core, _).

In this case, it is advisable to restrict the scope of the clauses as much as possible to exact exception terms.
For the exact message terms, see the core_messages category source file. Defining this hook predicate can
also be used to suppress all messages from a given component. For example:

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(_Message, _Kind, code_metrics, _Tokens).

5.13.18 Tests with timeout limits

There’s no portable way to call a goal with a timeout limit. However, some backend Prolog compilers provide
this functionality:

• B-Prolog: time_out/3 predicate

• ECLiPSe: timeout/3 and timeout/7 library predicates

• LVM: call_with_timeout/2-3 library predicates

• SICStus Prolog: time_out/3 library predicate

• SWI-Prolog: call_with_time_limit/2 library predicate

• Trealla Prolog: call_with_time_limit/2 and time_out/3 library predicates

• XSB: timed_call/2 built-in predicate

• YAP: time_out/3 library predicate

Logtalk provides a timeout portability library implementing a simple abstraction for those backend Prolog
compilers.

The logtalk_tester automation script accepts a timeout option that can be used to set a limit per test set.

418 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.13.19 Setup and cleanup goals

A test object can define setup/0 and cleanup/0 goals. The setup/0 predicate is called, when defined, before
running the object unit tests. The cleanup/0 predicate is called, when defined, after running all the object
unit tests. The tests are skipped when the setup goal fails or throws an error. For example:

cleanup :-
this(This),
object_property(This, file(_,Directory)),
atom_concat(Directory, serialized_objects, File),
catch(ignore(os::delete_file(File)), _, true).

Per test setup and cleanup goals can be defined using the test/3 dialect and the setup/1 and cleanup/1
options. The test is skipped when the setup goal fails or throws an error. Note that a broken test cleanup
goal doesn’t affect the test but may adversely affect any following tests. Variables in the setup and cleanup
goals are shared with the test body.

5.13.20 Test annotations

It’s possible to define per unit and per test annotations to be printed after the test results or when tests
are skipped. This is particularly useful when some units or some unit tests may be run while still being
developed. Annotations can be used to pass additional information to a user reviewing test results. By
intercepting the unit test framework message printing calls (using the message_hook/4 hook predicate), test
automation scripts and integrating tools can also access these annotations.

Units can define a global annotation using the predicate note/1. To define per test annotations, use the
test/3 dialect and the note/1 option. For example, you can inform why a test is being skipped by writing:

- test(foo_1, true, [note('Waiting for Deep Thought answer')]) :-
...

Annotations are written, by default, between parenthesis after and in the same line as the test results.

5.13.21 Working with test data files

Frequently tests make use of test data files that are usually stored in the test set directory or in sub-directories.
These data files are referenced using their relative paths. But to allow the tests to run independently of the
Logtalk process current directory, the relative paths often must be expanded into an absolute path before
being passed to the predicates being tested. The file_path/2 protected predicate can be used in the test
definitions to expand the relative paths. For example:

% check that the encoding/1 option is accepted
test(lgt_unicode_open_4_01, true) :-

^^file_path(sample_utf_8, Path),
open(Path, write, Stream, [encoding('UTF-8')]),
close(Stream).

The absolute path is computed relative to the path of self, i.e. relative to the path of the test object that
received the message that runs the tests.

5.13. lgtunit 419

The Logtalk Handbook, Release v3.61.0

5.13.22 Flaky tests

Flaky tests are tests that pass or fail non-deterministically, usually due to external conditions (e.g. computer
or network load). Thus, flaky tests often don’t result from bugs in the code being tested itself but from test
execution conditions that are not predictable. The note/1 annotation can be used to alert that a test failure
is for a flaky test. If the note/1 argument is an atom containing the sub-atom flaky, the testing automation
support outputs the text [flaky] when reporting failed tests. Moreover, the logtalk_tester automation
script will ignore failed flaky tests when setting its exit status.

5.13.23 Debugging failed tests

Debugging of failed unit tests is simplified by using test assertions as the reason for the assertion failures is
printed out. Thus, use preferably the test/2-3 dialects with true(Assertion), deterministic(Assertion),
subsumes(Expected, Result), or variant(Term1, Term2) outcomes. If a test checks multiple assertions, you
can use the predicate assertion/2 in the test body. In the case of QuickCheck tests, the v(true) verbose
option can be used to print the generated test case that failed if necessary.

If the assertion failures don’t provide enough information, you can use the debugger tool to debug failed unit
tests. Start by compiling the unit test objects and the code being tested in debug mode. Load the debugger
and trace the test that you want to debug. For example, assuming your tests are defined in a tests object
and that the identifier of test to be debugged is test_foo:

| ?- logtalk_load(debugger(loader)).
...

| ?- debugger::trace.
...

| ?- tests::run(test_foo).
...

You can also compile the code and the tests in debug mode but without using the hook/1 compiler option
for the tests compilation. Assuming that the context_switching_calls flag is set to allow, you can then use
the (<<)/2 debugging control construct to debug the tests. For example, assuming that the identifier of test
to be debugged is test_foo and that you used the test/1 dialect:

| ?- logtalk_load(debugger(loader)).
...

| ?- debugger::trace.
...

| ?- tests<<test(test_foo).
...

In the more complicated cases, it may be worth to define loader_debug.lgt and tester_debug.lgt driver
files that load code and tests in debug mode and also load the debugger.

420 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.13.24 Code coverage

If you want entity predicate clause coverage information to be collected and printed, you will need to compile
the entities that you’re testing using the flags debug(on) and source_data(on). Be aware, however, that
compiling in debug mode results in a performance penalty.

A single test object may include tests for one or more entities (objects, protocols, and categories). The
entities being tested by a unit test object for which code coverage information should be collected must be
declared using the cover/1 predicate. For example, to collect code coverage data for the objects foo and bar
include in the tests object the two clauses:

cover(foo).
cover(bar).

Code coverage is listed using the predicates clause indexes (counting from one). For example, using the
points example in the Logtalk distribution:

% point: default_init_option/1 - 2/2 - (all)
% point: instance_base_name/1 - 1/1 - (all)
% point: move/2 - 1/1 - (all)
% point: position/2 - 1/1 - (all)
% point: print/0 - 1/1 - (all)
% point: process_init_option/1 - 1/2 - [1]
% point: position_/2 - 0/0 - (all)
% point: 7 out of 8 clauses covered, 87.500000% coverage

The numbers after the predicate indicators represents the clauses covered and the total number of clauses.
E.g. for the process_init_option/1 predicate, the tests cover 1 out of 2 clauses. After these numbers, we
either get (all) telling us that all clauses are covered or a list of indexes for the covered clauses. E.g. only
the first clause for the process_init_option/1 predicate, [1]. Summary clause coverage numbers are also
printed for entities and for clauses across all entities.

In the printed predicate clause coverage information, you may get a total number of clauses smaller than the
covered clauses. This results from the use of dynamic predicates with clauses asserted at runtime. You may
easily identify dynamic predicates in the results as their clauses often have an initial count equal to zero.

The list of indexes of the covered predicate clauses can be quite long. Some backend Prolog compilers
provide a flag or a predicate to control the depth of printed terms that can be useful:

• CxProlog: write_depth/2 predicate

• ECLiPSe: print_depth flag

• LVM 3.2.0 or later: answer_write_options flag

• SICStus Prolog: toplevel_print_options flag

• SWI-Prolog 7.1.10 or earlier: toplevel_print_options flag

• SWI-Prolog 7.1.11 or later: answer_write_options flag

• XSB: set_file_write_depth/1 predicate

• YAP: write_depth/2-3 predicates

Code coverage is only available when testing Logtalk code. But Prolog modules can often be compiled as
Logtalk objects and plain Prolog code may be wrapped in a Logtalk object. For example, assuming a module.
pl module file, we can compile and load the module as an object by simply calling:

5.13. lgtunit 421

The Logtalk Handbook, Release v3.61.0

| ?- logtalk_load(module).
...

The module exported predicates become object public predicates. For a plain Prolog file, say plain.pl, we
can define a Logtalk object that wraps the code using an include/1 directive:

:- object(plain).

:- include('plain.pl').

:- end_object.

The object can also declare as public the top Prolog predicates to simplify writing the tests. In alternative,
we can use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(plain, [hook(object_wrapper_hook)]).
...

These workarounds may thus allow generating code coverage data also for Prolog code by defining tests that
use the (<<)/2 debugging control construct to call the Prolog predicates.

See also the section below on exporting code coverage results to XML files, which can be easily converted
and published as e.g. HTML reports.

5.13.25 Automating running tests

You can use the scripts/logtalk_tester.sh Bash shell script or the scripts/logtalk_tester.ps1 Power-
Shell script for automating running unit tests. See the scripts/NOTES.md file for details or type:

$ logtalk_tester -h

The scripts support the same set of options but the option for passing additional arguments to the tests use
different syntax. For example:

$ logtalk_tester -p gnu -- foo bar baz

PS> logtalk_tester -p gnu -a foo,bar,baz

On POSIX systems, assuming Logtalk was installed using one of the provided installers or installation scripts,
there is also a man page for the script:

$ man logtalk_tester

Alternatively, an HTML version of this man page can be found at:

https://logtalk.org/man/logtalk_tester.html

The logtalk_tester.ps1 PowerShell script timeout option requires that Git for Windows is also installed as
it requires the GNU timeout command bundled with it.

In alternative to using the logtalk_tester.ps1 PowerShell script, the Bash shell version of the automation
script can also be used in Windows operating-systems with selected backends by using the Bash shell included

422 Chapter 5. Developer Tools

https://logtalk.org/man/logtalk_tester.html

The Logtalk Handbook, Release v3.61.0

in the Git for Windows installer. That requires defining a .profile file setting the paths to the Logtalk scripts
and the Prolog backend executables. For example:

$ cat ~/.profile
YAP
export PATH="/C/Program Files/Yap64/bin":$PATH
GNU Prolog
export PATH="/C/GNU-Prolog/bin":$PATH
SWI/Prolog
export PATH="/C/Program Files/swipl/bin":$PATH
ECLiPSe
export PATH="/C/Program Files/ECLiPSe 7.0/lib/x86_64_nt":$PATH
SICStus Prolog
export PATH="/C/Program Files/SICStus Prolog VC16 4.6.0/bin":$PATH
Logtalk
export PATH="$LOGTALKHOME/scripts":"$LOGTALKHOME/integration":$PATH

The Git for Windows installer also includes GNU coreutils and its timeout command, which is used by the
logtalk_tester script -t option.

Note that some tests may give different results when run from within the Bash shell compared with running
the tests manually using a Windows GUI version of the Prolog backend. Some backends may also not be
usable for automated testing due to the way their are made available as Windows applications.

Additional advice on testing and on automating testing using continuous integration servers can be found
at:

https://logtalk.org/testing.html

5.13.26 Utility predicates

The lgtunit tool provides several public utility predicates to simplify writing unit tests and for general use:

• variant(Term1, Term2)

To check when two terms are a variant of each other (e.g. to check expected test results against actual
results when they contain variables).

• assertion(Goal)

To generate an exception in case the goal argument fails or throws an error.

• assertion(Description, Goal)

To generate an exception in case the goal argument fails or throws an error (the first argument allows
assertion failures to be distinguished when using multiple assertions).

• approximately_equal(Number1, Number2, Epsilon)

For number approximate equality.

• essentially_equal(Number1, Number2, Epsilon)

For number essential equality.

• tolerance_equal(Number1, Number2, RelativeTolerance, AbsoluteTolerance)

For number equality within tolerances.

• Number1 =~= Number2

For number (or list of numbers) close equality (usually floating-point numbers).

• benchmark(Goal, Time)

For timing a goal.

5.13. lgtunit 423

https://logtalk.org/testing.html

The Logtalk Handbook, Release v3.61.0

• benchmark_reified(Goal, Time, Result)

Reified version of benchmark/2.

• benchmark(Goal, Repetitions, Time)

For finding the average time to prove a goal.

• benchmark(Goal, Repetitions, Clock, Time)

For finding the average time to prove a goal using a cpu or a wall clock.

• deterministic(Goal)

For checking that a predicate succeeds without leaving a choice-point.

• deterministic(Goal, Deterministic)

Reified version of the deterministic/1 predicate.

The assertion/1-2 predicates can be used in the body of tests where using two or more assertions is con-
venient or in the body of tests written using the test/1, succeeds/1, and deterministic/1 dialects to help
differentiate between the test goal and checking the test goal results and to provide more informative test
failure messages.

When the assertion is a call to local predicate of the tests object, you must call assertion/1-2 using an
implicit or explicit message instead of a using super call. To use an implicit message, add the following
directive to the tests object:

:- uses(lgtunit, [assertion/1, assertion/2]).

The reason this is required is that the assertion/1-2 predicates are declared as meta-predicates and thus
assertion goals are called in the context of the sender, which would be the lgtunit object in the case of a
(^^)/2 call (as it preserves both self and sender and the tests are internally run by a message sent from the
lgtunit object to the tests object).

As the benchmark/2-4 predicates are meta-predicates, turning on the optimize compiler flag is advised to
avoid runtime compilation of the meta-argument, which would add an overhead to the timing results. But
this advice conflicts with collecting code coverage data, which requires compilation in debug mode. The
solution is to use separate test objects for benchmarking and for code coverage. But note that the CPU
execution time (in seconds) for each individual test is reported by default when running the tests.

Consult the lgtunit object documentation for more details on these predicates.

5.13.27 Exporting test results in xUnit XML format

To output test results in the xUnit XML format (from JUnit; see e.g. https://github.com/windyroad/
JUnit-Schema or https://llg.cubic.org/docs/junit/), simply load the xunit_output.lgt file before running
the tests. This file defines an object, xunit_output, that intercepts and rewrites unit test execution messages,
converting them to the xUnit XML format.

To export the test results to a file using the xUnit XML format, simply load the xunit_report.lgt file before
running the tests. A file named xunit_report.xml will be created in the same directory as the object defining
the tests. When running a set of test suites as a single unified suite (using the run_test_sets/1 predicate),
the single xUnit report is created in the directory of the first test suite object in the set.

To use in alternative the xUnit.net v2 XML format (https://xunit.net/docs/format-xml-v2), load either the
xunit_net_v2_output.lgt file or the xunit_net_v2_report.lgt file.

When using the logtalk_tester automation script, use either the -f xunit option or the -f xunit_net_v2
option to generate the xunit_report.xml files on the test set directories.

There are several third-party xUnit report converters that can generate HTML files for easy browsing. For
example:

424 Chapter 5. Developer Tools

https://github.com/windyroad/JUnit-Schema
https://github.com/windyroad/JUnit-Schema
https://llg.cubic.org/docs/junit/
https://xunit.net/docs/format-xml-v2

The Logtalk Handbook, Release v3.61.0

• http://allure.qatools.ru (supports multiple reports)

• https://github.com/Zir0-93/xunit-to-html (supports multiple test sets in a single report)

• https://www.npmjs.com/package/xunit-viewer

• https://github.com/JatechUK/NUnit-HTML-Report-Generator

• https://plugins.jenkins.io/xunit

5.13.28 Exporting test results in the TAP output format

To output test results in the TAP (Test Anything Protocol) format, simply load the tap_output.lgt file before
running the tests. This file defines an object, tap_output, that intercepts and rewrites unit test execution
messages, converting them to the TAP output format.

To export the test results to a file using the TAP (Test Anything Protocol) output format, load instead the
tap_report.lgt file before running the tests. A file named tap_report.txt will be created in the same
directory as the object defining the tests.

When using the logtalk_tester automation script, use the -f tap option to generate the tap_report.xml
files on the test set directories.

When using the test/3 dialect with the TAP format, a note/1 option whose argument is an atom starting
with a TODO or todo word results in a test report with a TAP TODO directive.

When running a set of test suites as a single unified suite, the single TAP report is created in the directory of
the first test suite object in the set.

There are several third-party TAP report converters that can generate HTML files for easy browsing. For
example:

• https://github.com/Quobject/tap-to-html

• https://plugins.jenkins.io/tap/

5.13.29 Generating Allure reports

A logtalk_allure_report.pl Bash shell script and a logtalk_allure_report.ps1 PowerShell script are pro-
vided for generating Allure reports. This requires exporting test results in xUnit XML format. A simple usage
example (assuming a current directory containing tests):

$ logtalk_tester -p gnu -f xunit
$ logtalk_allure_report
$ allure open

The logtalk_allure_report script supports command-line options to pass the tests directory (i.e. the direc-
tory where the logtalk_tester script was run), the directory where to collect all the xUnit report files for
generating the report, the directory where the report is to be saved, and the report title (see the script man
page or type logtalk_allure_report -h). The script also supports saving the history of past test runs. In
this case, a persistant location for both the results and report directories must be used.

It’s also possible to use the script just to collect the xUnit report files generated by lgtunit and delegate the
actual generation of the report to e.g. an Allure Docker container or to a Jenkins plug-in. Two examples are:

• https://github.com/fescobar/allure-docker-service

• https://plugins.jenkins.io/allure-jenkins-plugin/

In this case, we would use the logtalk_allure_report script option to only perform the preprocessing step:

5.13. lgtunit 425

http://allure.qatools.ru
https://github.com/Zir0-93/xunit-to-html
https://www.npmjs.com/package/xunit-viewer
https://github.com/JatechUK/NUnit-HTML-Report-Generator
https://plugins.jenkins.io/xunit
https://github.com/Quobject/tap-to-html
https://plugins.jenkins.io/tap/
https://docs.qameta.io/allure-report/
https://github.com/fescobar/allure-docker-service
https://plugins.jenkins.io/allure-jenkins-plugin/

The Logtalk Handbook, Release v3.61.0

$ logtalk_allure_report -p

The scripts also supports passing environment pairs, which are displayed in the generated Allure reports in
the environment pane. This feature can be used to pass e.g. the backend name and the backend version or
git commit hash. The option syntax differs, however, between the two scripts. For example, using the Bash
script:

$ logtalk_allure_report -- Backend='GNU Prolog' Version=1.5.0

Or:

$ logtalk_allure_report -- Project='Deep Thought' Commit=`git rev-parse --short HEAD`

In the case of the PowerShell script, the pairs are passed comma separated inside a string:

PS> logtalk_allure_report -e "Backend='GNU Prolog',Version=1.5.0"

Or:

PS> logtalk_allure_report -e "Project='Deep Thought',Commit=bf166b6"

To show tests run trends in the report (e.g. when running the tests for each application source code commit),
save the processed test results and the report data to permanent directories. For example:

$ logtalk_allure_report \
-i "$HOME/my_project/allure-results" \
-o "$HOME/my_project/allure-report"

$ allure open "$HOME/my_project/allure-report"

Note that Allure cleans the report directory when generating a new report. Be careful to always specify a
dedicated directory to prevent accidental data loss.

When using the xunit_net_v2 output format, it’s possible to generate reports with links to the tests source
code. This requires using the logtalk_tester shell script option that allows passing the base URL for those
links. This option needs to be used together with the option to suppress the tests directory prefix so that the
links can be constructed by appending the tests file relative path to the base URL. For example, assuming
that you want to generate a report for the tests included in the Logtalk distribution when using the GNU
Prolog backend:

$ cd $LOGTALKUSER
$ logtalk_tester \
-p gnu \
-f xunit_net_v2 \
-s "$LOGTALKUSER" \
-u "https://github.com/LogtalkDotOrg/logtalk3/tree/

→˓3e4ea295986fb09d0d4aade1f3b4968e29ef594e/"

The use of a git hash in the base URL ensures that the generated links will always show the exact versions of
the tests that were run. The links include the line number for the tests in the tests files (assuming that the
git repo is stored in a BitBucket, GitHub, or GitLab server). But note that not all supported backends provide
accurate line numbers.

There are some caveats when generating Allure reports that users must be aware. First, Allure expects test
names to be unique across different tests sets. If there are two test with the same name in two different
test sets, only one of them will be reported. Second, skipped test sets are not reported. Finally, when using

426 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

the xUnit.net v2 XML format, tests are reported in a random order instead of their run order and dates are
displayed as “unknown” in the overview page.

5.13.30 Exporting code coverage results in XML format

To export code coverage results in XML format, load the coverage_report.lgt file before running the tests.
A file named coverage_report.xml will be created in the same directory as the object defining the tests.

The XML file can be opened in most web browsers (with the notorious exception of Google Chrome) by
copying to the same directory the coverage_report.dtd and coverage_report.xsl files found in the tools/
lgtunit directory (when using the logtalk_tester script, these two files are copied automatically). In
alternative, an XSLT processor can be used to generate an XHTML file instead of relying on a web browser
for the transformation. For example, using the popular xsltproc processor:

$ xsltproc -o coverage_report.html coverage_report.xml

On Windows operating-systems, this processor can be installed using e.g. Chocolatey. On a POSIX operating-
systems (e.g. Linux, macOS, . . .) use the system package manager to install it if necessary.

The coverage report can include links to the source code when hosted on Bitbucket, GitHub, or GitLab. This
requires passing the base URL as the value for the url XSLT parameter. The exact syntax depends on the
XSLT processor, however. For example:

$ xsltproc \
--stringparam url https://github.com/LogtalkDotOrg/logtalk3/blob/master \
-o coverage_report.html coverage_report.xml

Note that the base URL should preferably be a permanent link (i.e. it should include the commit SHA1) so
that the links to source code files and lines remain valid if the source code is later updated. It’s also necessary
to suppress the local path prefix in the generated coverage_report.xml file. For example:

$ logtalk_tester -c xml -s $HOME/logtalk/

Alternatively, you can pass the local path prefix to be suppressed to the XSLT processor (note that the
logtalk_tester script suppresses the $HOME prefix by default):

$ xsltproc \
--stringparam prefix logtalk/ \
--stringparam url https://github.com/LogtalkDotOrg/logtalk3/blob/master \
-o coverage_report.html coverage_report.xml

If you are using Bitbucket, GitHub, or GitLab hosted in your own servers, the url parameter may not contain
a bitbucket, github, or gitlab string. In this case, you can use the XSLT parameter host to indicate which
service are you running.

5.13. lgtunit 427

The Logtalk Handbook, Release v3.61.0

5.13.31 Automatically creating bug reports at issue trackers

To automatically create bug report issues for failed tests in GitHub or GitLab servers, see the issue_tracker
tool.

5.13.32 Minimizing test results output

To minimize the test results output, simply load the minimal_output.lgt file before running the tests. This
file defines an object, minimal_output, that intercepts and summarizes the unit test execution messages.

5.13.33 Known issues

Parameter variables (_VariableName_) cannot currently be used in the definition of the condition/1, setup/
1, and cleanup/1 test options when using the test/3 dialect. Use in alternative the parameter/2 built-in
execution context predicate.

Deterministic unit tests are currently not available when using Quintus Prolog as it lacks built-in support that
cannot be sensibly defined in Prolog.

5.14 linter

Logtalk provides a built-in linter tool that runs automatically when compiling and loading source files. The
lint warnings are controlled by a set of flags. The default values for these flags are defined in the backend
Prolog compiler adapter files and can be overriden from a settings file or from a source file (e.g. a loader
file). These flags can be set globally using the set_logtalk_flag/2 built-in predicate. For (source file or entity)
local scope, use instead the set_logtalk_flag/2 directive. Some lint checks are turned off by default, specially
when computationally expensive.

Note that, in some cases, the linter may generate false warnings due to source code analysis limitations or
special cases that, while valid when intended, usually result from programming issues. When a code rewrite
is not a sensible solution to avoid the warning, the workaround is to turn off as locally as possible the flag
that controls the warning.

5.14.1 Main linter checks

Lint checks include:

• Missing directives (including scope, meta-predicate, dynamic, discontiguous, and multifile directives)

• Duplicated directives, clauses, and grammar rules

• Missing predicates (unknown messages plus calls to non-declared and non-defined predicates)

• Calls to declared but not defined static predicates

• Non-terminals called as predicates (instead of via the phrase/2-3 built-in methods)

• Non-portable predicate calls, predicate options, arithmetic function calls, directives, flags, and flag
values

• Suspicious calls (syntactically valid calls that are likely semantic errors; e.g. float comparisons using
the standard arithmetic comparison operators)

• Deprecated directives, predicates, control constructs, and flags

428 Chapter 5. Developer Tools

../userman/programming.html#programming-flags-lint
../refman/predicates/set_logtalk_flag_2.html
../refman/directives/set_logtalk_flag_2.html

The Logtalk Handbook, Release v3.61.0

• References to unknown entities (objects, protocols, categories, or modules)

• Top-level shortcuts used as directives

• Unification goals that will succeed without binding any variables

• Unification goals that will succeed creating a cyclic term

• Goals that are always true or always false

• Trivial goal fails (due to no matching predicate clause)

• Redefined built-in predicates

• Redefined standard operators

• Lambda expression unclassified variables and mixed up variables

• Lambda expression with parameter variables used elsewhere in a clause

• Singleton variables

• If-then-else and soft cut control constructs without an else part

• If-then-else and soft cut control constructs where the test is a unification between a variable and a
ground term

• Missing parenthesis around if-then-else and disjunction control constructs in the presence of cuts in
the first argument

• Cuts in clauses for multifile predicates

• Missing cut in repeat loops

• Possible non-steadfast predicate definitions

• Non-tail recursive predicate definitions

• Redundant calls to control constructs and built-in predicates

• Calls to all-solutions predicates with existentially qualified variables not occurring in the qualified goal

• Calls to all-solutions predicates with no shared variables between template and goal

• Calls to bagof/3 and setof/3 where the goal argument contains singleton variables

• Calls to findall/3 used to backtrack over all solutions of a goal without collecting them

• Calls to catch/3 that catch all exceptions

• Calls to standard predicates that have more efficient alternatives

• File, entity, predicate, and variable names not following official coding guidelines

• Variable names that differ only on case

• Clauses whose body is a disjunction

• Naked meta-variables in cut-transparent control constructs

Additional checks are provided by the lgtdoc, make, and dead_code_scanner tools. For large projects, the
data generated by the code_metrics tool may also be relevant in accessing the quality of your code.

5.14. linter 429

The Logtalk Handbook, Release v3.61.0

5.14.2 Help on linter warnings

By loading the tutor tool, most lint warnings are expanded with explanations and suggestions on how to fix
the reported issues.

5.14.3 Extending the linter

Experimental support for extending the linter with user-defined warnings is available using the
logtalk_linter_hook/7 multifile hook predicate.

5.14.4 Linting Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to compile as objects. For example, if the
Prolog module file is named module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance of proprietary extensions, this
solution is not expected to work for all cases.

5.14.5 Linting plain Prolog files

This tool can also be applied to plain Prolog code. For example, if the Prolog file is named code.pl, simply
define an object including its code:

:- object(code).
:- include('code.pl').

:- end_object.

Save the object to an e.g. code.lgt file in the same directory as the Prolog file and then load it:

| ?- logtalk_load(code, [source_data(on)]).

In alternative, use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on)]).

With either wrapping solution, pay special attention to any compilation warnings that may signal issues that
could prevent the plain Prolog from being fully checked when wrapped by an object.

430 Chapter 5. Developer Tools

../refman/predicates/logtalk_linter_hook_7.html

The Logtalk Handbook, Release v3.61.0

5.15 make

Logtalk provides a make tool supporting several targets using the logtalk_make/0-1 built-in predicates.
Top-level shortcuts for the targets are also provided.

5.15.1 API documentation

To consult the documentation of the logtalk_make/0-1 built-in predicates, open in a web browser the links:

• ../refman/predicates/logtalk_make_0.html

• ../refman/predicates/logtalk_make_1.html

There is also a user-defined hook predicate that supports defining additional actions for the make targets (e.g.
running tests automatically on make check or regenerating API documentation on make documentation):

• ../refman/predicates/logtalk_make_target_action_1.html

5.16 packs

This tool provides predicates for downloading, installing, upgrading, and uninstalling third-party libraries
and applications, generically known as packs. Collections of pack specifications are made available using
registries. Registries can be local to a system, publicly shared, or private to a company (e.g. only available
in a VPN). There is no concept of a central registry. Users decide which registries they trust and want to use
and add them using their published URLs. The tool supports both pack checksums and signatures and takes
several steps to sanitize registry and pack specifications. As other Logtalk developer tools, portability is a
main goal. This tool can be used with any supported Prolog backend and run in both POSIX and Windows
systems. Moreover, this tool can be used not only for handling Logtalk packs but also Prolog only packs, thus
providing a solution for sharing portable resources between multiple systems.

A list of public Logtalk and Prolog pack registries is available at:

https://github.com/LogtalkDotOrg/pack-registries

This tool is the beta stage of development. Feedback is most welcome.

5.16.1 Requirements

On POSIX systems (Linux, macOS, . . .), the following shell commands are required:

• sha256sum (provided by GNU coreutils)

• curl

• bsdtar (provided by libarchive or libarchive-tools)

• gpg (provided by gnupg2)

• git

The tool uses bsdtar instead of GNU tar so that it can uncompress .zip archives (unzip doesn’t provide
the desired options that allows a simple and reliable solution for ignoring the non-predictable name of the
wrapper directory).

On Windows systems, the following shell commands are required:

• certutil.exe

5.15. make 431

../refman/predicates/logtalk_make_0.html
../refman/predicates/logtalk_make_1.html
../refman/predicates/logtalk_make_target_action_1.html
https://github.com/LogtalkDotOrg/pack-registries

The Logtalk Handbook, Release v3.61.0

• curl.exe

• tar.exe

• gpg.exe

• git.exe

In recent Windows 10 builds, only gpg and git should require installation. You can download the GnuPG
software from:

https://www.gnupg.org/

You can download Git from:

https://gitforwindows.org

On macOS systems, Apple bundles both curl and BSD tar (under the name tar; you can simply create a
bsdtar alias or install a more recent version). The required commands can be easily installed using MacPorts:

$ sudo port install coreutils libarchive gnupg2 git

Or using Homebrew:

$ brew install coretutils libarchive gnupg2 git

On Linux systems, use the distribution own package manager to install any missing command.

5.16.2 API documentation

This tool API documentation is available at:

../../docs/library_index.html#packs

5.16.3 Loading

This tool can be loaded using the query:

| ?- logtalk_load(packs(loader)).

5.16.4 Testing

To run the tool tests, use the query:

| ?- logtalk_load(packs(tester)).

The tests can be run without interfering with the user packs setup.

432 Chapter 5. Developer Tools

https://www.gnupg.org/
https://gitforwindows.org
../../docs/library_index.html#packs

The Logtalk Handbook, Release v3.61.0

5.16.5 Usage

The packs tool loads at startup all the currently defined registry and pack specifications (from the reg-
istries/packs storage directory; see below). When no registry/pack setup exists, a new one is automatically
created.

The tool provides two main objects, registries and packs, for handling, respectively, registries and packs.
Both objects accept a help/0 message that describes the most common queries.

5.16.6 Registries and packs storage

The tool uses a directory specified using the logtalk_packs library alias when defined (in a settings file or
in a backend Prolog initialization file). When this library alias is not defined, the tool uses the value of the
LOGTALKPACKS environment variable when defined. Otherwise it defaults to the ~/logtalk_packs directory.
The actual directory can be retrieved by the query:

| ?- packs::logtalk_packs(Directory).
...

This directory holds sub-directories for registries, packs, and archives. These sub-directories are automati-
cally created when loading the packs tool if they don’t exist . Users shouldn’t manually modify the contents
of these directories. Multiple and independent registry/pack setups are possible using virtual environments
as explained next.

Your registries and packs setup can be saved and restored (e.g. in a different system) by using the
packs::save/2 and packs::restore/1-2 predicates. For example:

| ?- packs::save(my_setup, [save(all)]).
...

Then, in the destination system:

| ?- packs::restore(my_setup).
...

If necessary, before restoring, the packs::reset/0 predicate can be called to delete any defined registries
and installed packs.

5.16.7 Virtual environments

An application may require a specific Logtalk version (e.g. the version used to test and certify it) and specific
pack versions. These requirements may differ between applications. Different applications may also have
conflicting requirements. Therefore, a virtual environment where an application requirements are fulfilled
may be required to develop and/or run it. A virtual environment is essentially a registries/packs storage
directory.

Defining the logtalk_packs library alias in a settings file or defining the LOGTALKPACKS environment variable
before starting Logtalk allows easy creation and switching between virtual environments. By using a per
application settings file (or a per application environment variable definition) each application can thus use
its own virtual environment.

When a virtual environment also requires a specific Logtalk version, this can be installed as a pack from the
official talkshow registry and used by (re)defining the LOGTALKHOME and LOGTALKUSER environment variables
to point to its pack directory (which can be queried by using the packs::directory/2 message). Several

5.16. packs 433

https://github.com/LogtalkDotOrg/talkshow

The Logtalk Handbook, Release v3.61.0

shell utilities are available that can set environment variables when changing to an application directory
(see e.g. direnv or Set-PsEnv).

A virtual environment setup (i.e. the currently defined registries and installed packs) can be saved into a file
(e.g. requirements.lgt) using the packs::save/1 predicate:

| ?- packs::save('requirements.lgt').
...

This query saves a listing of all the installed packs and their registries. Using the saved file, the virtual
environment setup can then be restored using the packs::restore/1-2 predicates. The file uses a simple
format with registry/2 and pack/3 facts (in this order) and can be manually created or edited if necessary.
For example:

registry(talkshow, 'https://github.com/LogtalkDotOrg/talkshow.git').
pack(talkshow, logtalk, 3:45:0).
pack(talkshow, lflat, 2:1:0).

These files can be distributed with applications so that users can easily fulfill application requirements by
using the packs tool. Typically, an application directory will include settings.lgt and requirements.lgt
files. The settings.lgt file can define the logtalk_packs library alias using code such as:

:- initialization((
logtalk_load_context(directory, Directory),
assertz(logtalk_library_path(logtalk_packs, Directory))

)).

A suitable named sub-directory can also be used. The application requirements can then be fulfilled by
starting Logtalk from the application directory (so that the application settings file is loaded) and running
once the query:

| ?- packs::restore('requirements.lgt').

After, the application loader.lgt file can then load the required packs using their loader files:

:- initialization((
% load required packs
logtalk_load(foo(loader)),
logtalk_load(bar(loader)),
...
% load application files
...

)).

5.16.8 Registry specification

A registry is a git remote repo that can be cloned, a downloadable archive, or a local directory containing a
Logtalk loader file that loads source files defining the registry itself and the packs it provides. The registry
name is ideally a valid unquoted atom. The registry directory must contain at least two Logtalk source files:

• A file defining an object named after the registry with a _registry suffix, implementing the
registry_protocol. This naming convention helps preventing name conflicts.

• A loader file (named loader.lgt or loader.logtalk) that loads the registry object file and all pack
object files.

434 Chapter 5. Developer Tools

https://github.com/direnv/direnv
https://github.com/rajivharris/Set-PsEnv

The Logtalk Handbook, Release v3.61.0

An example of a registry specification object would be:

:- object(jdoe_awesome_packs_registry,
implements(registry_protocol)).

:- info([
version is 1:0:0,
author is 'John Doe',
date is 2021-10-18,
comment is 'John Doe awesome packs registry spec.'

]).

name(jdoe_awesome_packs).

description('John Doe awesome packs').

home('https://example.com/jdoe_awesome_packs').

clone('https://github.com/jdoe/jdoe_awesome_packs.git').

archive('https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip').

:- end_object.

Optionally, the registry object can also define a note(Action, Note) predicate. The Action argument is an
atom: add, update, or delete. The Note argument is also an atom. The tool will print any available notes
when executing one of the registry actions. See the registry_protocol documentation for more details.

The registry directory should also contain LICENSE and README.md files (individual packs can use a different
license, however). The path to the README.md file is printed when the registry is added. It can also be queried
using the registries::directory/2 predicate.

Summarizing the required directory structure using the above example (note that the registry and pack
specification files are named after the objects):

jdoe_awesome_packs
LICENSE
README.md
jdoe_awesome_packs_registry.lgt
loader.lgt
foo_pack.lgt
bar_pack.lgt
...

With the contents of the loader.lgt file being:

:- initialization((
logtalk_load(jdoe_awesome_packs_registry),
logtalk_load(foo_pack),
logtalk_load(bar_pack),
...

)).

It would be of course possible to have all objects in a single source file. But having a file per object and a
loader file helps maintenance and it’s also a tool requirement for applying safety procedures to the source
file contents and thus successfully loding the registry and pack specs.

5.16. packs 435

The Logtalk Handbook, Release v3.61.0

As registries are git repos in the most common case and thus adding them performs a git repo cloning, they
should only contain the strictly required files.

5.16.9 Registry handling

Registries can be added using the registries::add/1-3 predicates, which take a registry URL. Using the
example above:

| ?- registries::add('https://github.com/jdoe/jdoe_awesome_packs.git').

HTTPS URLs must end with either a .git extension or a an archive extension. Git cloning URLs are preferred
but a registry can also be made available via a local directory (using a file:// URL) or a downloadable
archive (using a https:// URL).

For registries made available using an archive, the registries::add/2-3 predicates must be used as the
registry name cannot in general be inferred from the URL basename or from the archived directory name.
The registry argument must also be the declared registry name in the registry specification object. For
example:

| ?- registries::add(
jdoe_awesome_packs,
'https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip'

).

The added registries can be listed using the registries::list/0 predicate:

| ?- registries::list.

% Defined registries:
% jdoe_awesome_packs (git)
% ...

The registries::describe/1 predicate can be used to print the details of a registry:

| ?- registries::describe(jdoe_awesome_packs).

% Registry: jdoe_awesome_packs
% Description: John Doe awesome packs
% Home: https://example.com/jdoe_awesome_packs
% Cloning URL: https://github.com/jdoe/jdoe_awesome_packs.git
% Archive URL: https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip

To update all registries, use the registries::update/0 predicate. To update a single registry, use the
registries::update/1-2 predicates. After updating, you can use the packs::outdated/0-1 predicates to
list any outdated packs.

Registries can also be deleted using the registries::delete/1-2 predicate. By default, any registries with
installed packs cannot be deleted. If you force deletion (by using the force(true) option), you can use the
packs::orphaned/0 predicate to list any orphaned packs that are installed.

See the tool API documentation on the registries object for other useful predicates.

436 Chapter 5. Developer Tools

../../docs/registries_0.html

The Logtalk Handbook, Release v3.61.0

5.16.10 Registry development

To simplify registry development and testing, use a local directory and a file:// URL when calling the
registries::add/1 predicate. For example:

| ?- registries::add('file:///home/jdoe/work/my_pack_collection').

If the directory is a git repo, the tool will clone it when adding it. Otherwise, the files in the directory
are copied to the registry definition directory. This allows the registry to be added and deleted without
consequences for the original registry source files.

To check your registry specifications, use the registries::lint/0-1 predicates after adding the registry.

5.16.11 Pack specification

A pack is specified using a Logtalk source file defining an object that implements the pack_protocol. The
source file should be named after the pack with a _pack suffix. This naming convention helps preventing
name conflicts, notably with the pack own objects. The file must be available from a declared pack registry.
The pack name is ideally a valid unquoted atom. An example of a registry specification object would be:

:- object(lflat_pack,
implements(pack_protocol)).

:- info([
version is 1:0:0,
author is 'Paulo Moura',
date is 2021-10-18,
comment is 'L-FLAT - Logtalk Formal Language and Automata Toolkit pack spec.'

]).

name(lflat).

description('L-FLAT - Logtalk Formal Language and Automata Toolkit').

license('MIT').

home('https://github.com/l-flat/lflat').

version(
2:1:0,
stable,
'https://github.com/l-flat/lflat/archive/refs/tags/v2.1.0.tar.gz',
sha256 - '9c298c2a08c4e2a1972c14720ef1498e7f116c7cd8bf7702c8d22d8ff549b6a1',
[logtalk @>= 3:36:0],
all

).

version(
2:0:2,
stable,
'https://github.com/l-flat/lflat/archive/refs/tags/v2.0.2.tar.gz',
sha256 - '8774b3863efc03bb6c284935885dcf34f69f115656d2496a33a446b6199f3e19',
[logtalk @>= 3:36:0],

(continues on next page)

5.16. packs 437

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

all
).

:- end_object.

Optionally, the pack object can also define a note(Action, Version, Note) predicate. The Action argument
is an atom: install, update, or uninstall. The Note argument is also an atom. The tool will print any
available notes when executing one of the registry actions. See the pack_protocol documentation for more
details.

The pack sources must be available either as a local directory (when using a file:// URL) or for download-
ing as a supported archive. The checksum for the archive must use the SHA-256 hash algorithm (sha256).
The pack may optionally be signed. Supported archive formats and extensions are:

• .zip

• .tgz, .tar.gz

• .tbz2, .tar.bz2

The pack sources should contain LICENSE, README.md, and loader.lgt (or loader.logtalk) files. The path
to the README.md file is printed when the pack is installed or updated. It can also be queried using the
packs::directory/2 predicate.

5.16.12 Pack URLs and Single Sign-On

Typically, pack archive download URLs are HTTPS URLs and handled using curl. It’s also possible to use git
archive to download pack archives, provided that the server supports it (as of this writing, Bitbucket and
GitLab public hosting services support it but not GitHub). Using git archive is specially useful when the
packs registry in hosted in a server using Single Sign-On (SSO) for authentication. In this case, HTTPS URLs
can only be handled by curl by passing a token (see below for an example). When the user have setup SSH
keys to authenticate to the packs registry server, git archive simplifies pack installation, providing a better
user experience. For example:

version(
1:0:1,
stable,
'git@gitlab.com/me/foo.git/v1.0.1.zip',
sha256 - '0894c7cdb8968b6bbcf00e3673c1c16cfa98232573af30ceddda207b20a7a207',
[logtalk @>= 3:36:0],
all

).

The pseudo-URL must be the concatenation of the SSH repo cloning URL with the archive name. The archive
name must be the concatenation of a valid tag with a supported archive extension. SSH repo cloning URLs
use the format:

git@<hostname>:path/to/project.git

They can usually be easily copied from the hosting service repo webpage. To compute the checksum, you
must first download the archive. For example:

$ git archive --output=foo-v1.0.1.zip --remote=git@gitlab.com/me/foo.git v1.0.1
$ openssl sha256 foo-v1.0.1.zip

438 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

Be sure to use a format that is supported by both the packs tool and the git archive command (the format
is inferred from the --output option). Do not download the archive from the web interface of the git hosting
service in order to compute the checksum. Different implementations of the archiving and compressing
algorithms may be used resulting in mismatched checksums.

5.16.13 Multiple pack versions

A pack may specify multiple versions. Each version is described using a version/6 predicate clause as
illustrated in the example above. The versions must be listed ordered from newest to oldest. For details, see
the pack_protocol API documentation.

Listing multiple versions allows the pack specification to be updated (by updating its registry) without forcing
existing users into installing (or updating to) the latest version of the pack.

5.16.14 Pack dependencies

Pack dependencies on other packs can be specified using the syntax Registry::Pack Operator Version
where Operator is a standard term comparison operator as described below. When a pack depends on
a Logtalk or backend version, the name logtalk or the identifier of the backend can be used in place of
Registry::Pack (see below for the table of backend specifiers).

Dependencies are specified using a list of the following elements:

• Registry::Pack @>= Version - the pack requires a dependency with version equal or above the spec-
ified one. For example, logtalk @>= 3:36:0 means that the pack requires Logtalk 3.36.0 or later
version.

• Registry::Pack @=< Version - the pack requires a dependency with version up to the specified one.
For example, common::bits @=< 2:1 means that the pack requires a common::bits pack up to 2.1. This
includes all previous versions and also all patches for version 2.1 (e.g. 2.1.7, 2.1.8, . . .) but not version
2.2 or newer.

• Registry::Pack @< Version - the pack requires a dependency with version older than the specified one.
For example, common::bits @< 3 means that the pack requires a common::bits 2.x or older version.

• Registry::Pack @> Version - the pack requires a dependency with version newer than the specified
one. For example, common::bits @> 2:4 means that the pack requires a common::bits 2.5 or newer
version.

• Registry::Pack == Version - the pack requires a dependency with a specific version. For example,
common::bits == 2:1 means that the pack requires a common::bits pack version 2.1.x (thus, from
version 2.1.0 to the latest patch for version 2.1).

• Registry::Pack \== Version - the pack requires a dependency with any version other than then the
one specified. For example, common::bits \== 2.1 means that the pack requires a common::bits pack
version other than any 2.1.x version.

It’s also possible to specify range dependencies by using two consecutive elements with the lower bound fol-
lowed by the upper bound. For example, [common::bits @>= 2, common::bits @< 3] means all common::bits
2.x versions but not older or newer major versions.

5.16. packs 439

The Logtalk Handbook, Release v3.61.0

5.16.15 Pack portability

Ideally, packs are fully portable and can be used with all Logtalk supported Prolog backends. This can be
declared by using the atom all in the last argument of the version/6 predicate (see example above).

When a pack can only be used with a subset of the Prolog backends, the last argument of the version/6
predicate is a list of backend identifiers (atoms):

• B-Prolog: b

• Ciao Prolog: ciao

• CxProlog: cx

• ECLiPSe: eclipse

• GNU Prolog: gnu

• JIProlog: ji

• LVM: lvm

• Quintus Prolog: quintus

• Scryer Prolog: scryer

• SICStus Prolog: sicstus

• SWI-Prolog: swi

• Tau Prolog: tau

• Trealla Prolog: trealla

• XSB: xsb

• YAP: yap

5.16.16 Pack development

To simplify pack development and testing, define a local registry and add to it a pack specification with the
development version available from a local directory. For example:

version(
0:11:0,
beta,
'file:///home/jdoe/work/my_awesome_library',
none,
[],
all

).

If the directory is a git repo, the tool will clone it when installing the pack. Otherwise, the files in the
directory are copied to the pack installation directory. This allows the pack to be installed, updated, and
uninstalled without consequences for the pack source files.

Packs that are expected to be fully portable should always be checked by loading them with the portability
flag set to warning.

To check your packs specifications, use the packs::lint/0-2 predicates after adding the registry that provides
the packs.

440 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.16.17 Pack handling

Packs must be available from a defined registry. To list all packs that are available for installation, use the
packs::available/0 predicate:

| ?- packs::available.

To list all installed packs, call the packs::installed/0 predicate:

| ?- packs::installed.

To know more about a specific pack, use the packs::describe/1-2 predicates. For example:

| ?- packs::describe(bar).

The packs::describe/2 predicate can be used when two or more registries provide packs with the same
name. For example:

| ?- packs::describe(reg, bar).

To install the latest version of a pack, we can use the packs::install/1-4 predicates. In the most simple case,
when a pack name is unique among registries, we can use the packs::install/1 predicate. For example:

| ?- packs::install(bar).

Any pack dependencies are also checked and installed or updated if necessary. Other install predicates are
available to disambiguate between registries and to install a specific pack version.

Packs becomes available for loading immediately after successful installation (no restarting of the Logtalk
session is required). For example, after the pack bar is installed, you can load it at the top-level by typing:

| ?- {bar(loader)}.

or load it from a loader file using the goal logtalk_load(bar(loader)).

After updating the defined registries, outdated packs can be listed using the packs::outdated/0 predicate.
You can update all outdated packs by calling the packs::update/0 predicate or update a single pack using
the packs::update/1-2 predicates. For example:

| ?- packs::update(bar).

The tool provides versions of the pack install, update, and uninstall predicates that accept a list of options:

• verbose(Boolean) (default is false)

• clean(Boolean) (default is false)

• force(Boolean) (default is false)

• checksum(Boolean) (default is true)

• checksig(Boolean) (default is false)

• git(Atom) (extra command-line options; default is '')

• curl(Atom) (extra command-line options; default is '')

• gpg(Atom) (extra command-line options; default is '')

• tar(Atom) (extra command-line options; default is '')

5.16. packs 441

The Logtalk Handbook, Release v3.61.0

When using a checksig(true) option to check a pack signature, is strongly advised that you also use the
verbose(true) option. For example:

| ?- packs::install(foo, bar, 1:1:2, [verbose(true), checksig(true)]).

Note that the public key used to sign the pack archive must be already present in your local system.

Downloading pack archives may require passing extra command-line options to curl for authentication. A
common solution is to use a personal access token. The details depend on the server software. An example
when using GitHub:

| ?- packs::install(foo, bar, 1:1:2, [curl('--header "Authorization: token foo42"')]).

Another example when using GitLab:

| ?- packs::install(foo, bar, 1:1:2, [curl('--header "PRIVATE-TOKEN: foo42"')]).

Pack archives may be encrypted, requiring passing the decryption passphrase when installing or updating a
pack. For example:

| ?- packs::install(foo, bar, 1:1:2, [tar('--passphrase test123')]).

In this case, you should be careful to not leak your passphrase in e.g. the query history.

To uninstall a pack that you no longer need, use the packs::uninstall/1-2 predicates. By default, only
packs with no dependent packs can be uninstalled. You can print or get a list of the packs that depend on a
given pack by using the packs::dependents/1-3 predicates. For example:

| ?- packs::dependents(reg, bar, Dependents).

See the tool API documentation on the packs object for other useful predicates.

5.16.18 Pack documentation

The path to the pack README.md file is printed when the pack is installed or updated. It can also be retrieved
at any time by using the readme/2 predicate. For example:

| ?- packs::readme(lflat, Path).

Additional documentation may also be available from the pack home page, which can be printed by using
the describe/1-2 predicates. For example:

| ?- packs::describe(lflat).

% Registry: ...
% Pack: lflat
% Description: L-FLAT - Logtalk Formal Language and Automata Toolkit
% License: MIT
% Home: https://github.com/l-flat/lflat
% Versions:
...

The pack API documentation can be generated using the lgtdoc tool library and directory predicates (de-
pending on the pack source files organization). For example:

442 Chapter 5. Developer Tools

../../docs/packs_0.html

The Logtalk Handbook, Release v3.61.0

| ?- {lflat(loader)},
{lgtdoc(loader)},
logtalk::expand_library_path(lflat, Path),
lgtdoc::rdirectory(Path).

...

This query creates a xml_docs directory in the current directory. The XML documentation files can then be
converted into a final format, e.g. HTML, using one of the lgtdoc tool provided scripts. For example:

$ cd xml_docs
$ lgt2html

For more details and alternatives, see the lgtdoc tool documentation.

It is also possible to add API documentation and diagrams for all the installed packs to the Logtalk distri-
bution API documentation and diagrams by calling the update_html_docs and update_svg_diagrams scripts
with the -i option. See the scripts documentation for more details.

5.16.19 Pinning registries and packs

Registries and packs can be pinned after installation to prevent accidental updating or deleting, e.g. when
using the batch update/0 predicate. This is useful when your application requires a specific version or for
security considerations (see below). For example, if we want the bar pack to stay at its current installed
version:

| ?- packs::pin(bar).
yes

After, any attempt to update or uninstall the pack will fail with an error message:

| ?- packs::update(bar).
! Cannot update pinned pack: bar
no

| ?- packs::uninstall(bar).
! Cannot uninstall pinned pack: bar
no

To enable the pack to be updated ou uninstalled, the pack must first be unpinned. Alternatively, the
force(true) option can be used. Note that if you force update a pinned pack, the new version will be
unpinned.

It’s also possible to pin (or unpin) all defined registries or installed packs at once by using the pin/0 (or
unpin/0) predicates. But note that registries added after or packs installed after will not be automatically
pinned.

5.16. packs 443

The Logtalk Handbook, Release v3.61.0

5.16.20 Testing packs

Logtalk packs (as most Logtalk libraries, tools, and examples) are expected to have a tester.lgt or tester.
logtalk tests driver file at the root of their directory, which can be used for both automated and manual
testing. For example, after installing the foo pack:

| ?- {foo(tester)}.

To test all installed packs, you can use the logtalk_tester automation script from the installed packs direc-
tory, which you can query using the goal:

| ?- packs::prefix(Directory).

Note that running the packs tests, like simply loading the pack, can result in calling arbitrary code, which
can potentially harm your system. Always take into account the security considerations discussed below.

5.16.21 Security considerations

New pack registries should be examined before being added, specially if public and from a previously un-
known source. The same precautions should be taken when adding or updating a pack. Note that a registry
can always index third-party packs.

Pack checksums are checked by default. But pack signatures are only checked if requested as packs are often
unsigned. Care should be taken when adding public keys for pack signers to your local system. Detached
signature files are assumed and expected to share the name of the archive and use a .asc extension. When
the checksig(true) option is used, the signature file is automatically downloaded using a URL constructed
from the pack archive URL.

Registry and pack spec files plus the registry loader file are compiled by term-expanding them so that only
expected terms are actually loaded and only expected logtalk_load/2 goals with expected relative file paths
are allowed. Predicates defining URLs are discarded if the URLs are neither https:// nor file:// URLs
or if they contain non-allowed characters (currently, only alpha-numeric ASCII characters plus the ASCII /,
., -, and _ characters are accepted). But note that this tool makes no attempt to audit pack source files
themselves.

Registries and packs can always be pinned so that they are not accidentally updated to a version that you
may not had the chance to audit.

5.16.22 Best practices

• Make available a new pack registry as a git repo. This simplifies updating the registry and rolling back
to a previous version.

• Use registry and pack names that are valid unquoted atoms, thus simplifying usage. Use descriptive
names with underscores if necessary to link words.

• Name registry and pack specification objects after their names with a _registry or _pack suffix. Save
the objects in files named after the objects.

• Create new pack versions from git tags.

• If the sources of a pack are available from a git repo, consider using signed commits and signed tags
for increased security.

• When a new pack version breaks backwards compatibility, list both the old and the new versions on
the pack spec file.

444 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

• Pin registries and packs when specific versions are critical for your work so that you can still easily
batch update the remaining packs and registries.

• Include the $LOGTALKPACKS directory (or the default ~/logtalk_packs directory) on your regular back-
ups.

5.16.23 Installing Prolog packs

This tool can also be used to install Prolog packs that don’t use Logtalk. After installing a pl_pack Prolog
pack from a pl_reg registry, it can be found in the $LOGTALKPACKS/packs/pl_reg/pl_pack directory. When
the LOGTALKPACKS environment variable is not defined, the pack directory is by default ~/logtalk_packs/
packs/pl_reg/pl_pack.

Different Prolog systems provide different solutions for locating Prolog code. For example, several Prolog
systems adopted the Quintus Prolog file_search_path/2 hook predicate. For these systems, a solution could
be to add a fact to this predicate for each installed Prolog pack. For example, assuming a pl_pack Prolog
pack:

:- multifile(file_search_path/2).
:- dynamic(file_search_path/2).

file_search_path(library, '$LOGTALKPACKS/packs/pl_pack').

If the Prolog system also supports reading an initialization file at startup, the above definition could be added
there.

5.16.24 Known issues

Using the verbose(true) option on Windows systems may not provide the shell commands output depending
on the backend.

On Windows systems, the reset, delete, and uninstall predicates may fail to delete all affected folders and
files due to a operating-system bug. Depending on the backend, this bug may cause some of the tests to fail.
For details on this bug, see:

https://github.com/microsoft/terminal/issues/309

The workaround is to use the Windows File Explorer to delete the left-over folders and files.

When using Ciao Prolog 1.20.0, a workaround is used for this system non-standard support for multifile
predicates.

When using GNU Prolog 1.5.0 as the backend on Windows, you may get an error on directory_files/2
calls. For details and a workaround, see:

https://github.com/didoudiaz/gprolog/issues/4

This issue is fixed in the GNU Prolog 1.5.1 version.

Using SICStus Prolog as the backend on Windows doesn’t currently work in version 4.7.0 and earlier versions.
The underlying issues are fixed in the SICStus Prolog 4.7.1 version.

XSB have an odd bug (likely in its parser) when reading files that may cause a pack installed version to be
reported as the end_of_file atom.

Some tests fail on Windows when using ECLiPSe or XSB due to file path representation issues.

5.16. packs 445

https://github.com/microsoft/terminal/issues/309
https://github.com/didoudiaz/gprolog/issues/4

The Logtalk Handbook, Release v3.61.0

5.17 ports_profiler

This tool counts and reports the number of times each port in the procedure box model is traversed during
the execution of queries. It can also report the number of times each clause (or grammar rule) is used. It is
inspired by the ECLiPSe port_profiler tool.

The procedure box model is the same used in the debugger tool. This is an extended version of the original
Byrd’s four port model. Besides the standard call, exit, fail, and redo ports, Logtalk also defines two
post-unification ports, fact and rule, and an exception port. This tool can also distinguishes between
deterministic exits (reported in the exit column in the profiling result tables) and exits that leave choice-
points (reported in the *exit column).

5.17.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#ports-profiler

For sample queries, please see the SCRIPT.txt file in the tool directory.

5.17.2 Loading

| ?- logtalk_load(ports_profiler(loader)).

Note that this tool cannot be loaded at the same time as other tools (e.g. the debugger) that also provide a
debug handler, which must be unique in a running session.

5.17.3 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(ports_profiler(tester)).

5.17.4 Compiling source files for port profiling

To compile source files for port profiling, simply compile them in debug mode and with the source_data flag
turned on. For example:

| ?- logtalk_load(my_source_file, [debug(on), source_data(on)]).

Alternatively, you can also simply turn on the debug and source_data flags globally before compiling your
source files:

| ?- set_logtalk_flag(debug, on), set_logtalk_flag(source_data, on).

Be aware, however, that loader files (e.g. library loader files) may override default flag values and thus
loaded files may not be compiled in debug mode. In this case, you will need to modify the loader files
themselves.

446 Chapter 5. Developer Tools

../../docs/library_index.html#ports-profiler

The Logtalk Handbook, Release v3.61.0

5.17.5 Generating profiling data

After loading this tool and compiling the source files that you want to profile in debug mode, simply call the
goals to be profiled.

5.17.6 Printing profiling data reports

After calling the goals that you want to profile, you can print a table with all profile data by typing:

| ?- ports_profiler::data.

To print a table with data for a single entity, use the query:

| ?- ports_profiler::data(Entity).

To print a table with data for a single entity predicate, use the query:

| ?- ports_profiler::data(Entity, Predicate).

In this case, the second argument must be either a predicate indicator, Name/Arity, or a non-terminal
indicator,Name//Arity`.

The profiling data can be reset using the query:

| ?- ports_profiler::reset.

To reset only the data about a specific entity, use the query:

| ?- ports_profiler::reset(Entity).

To illustrate the tool output, consider the family example in the Logtalk distribution:

| ?- {ports_profiler(loader)}.
...
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk_load(family(loader)).
...
yes

| ?- addams::sister(Sister, Sibling).
Sister = wednesday,
Sibling = pubert ;
Sister = wednesday,
Sibling = pugsley ;
Sister = wednesday,
Sibling = pubert ;
Sister = wednesday,
Sibling = pugsley ;
no

(continues on next page)

5.17. ports_profiler 447

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

?- ports_profiler::data.
Entity Predicate Fact Rule Call Exit *Exit Fail Redo Error
--
addams female/1 2 0 1 1 1 0 1 0
addams parent/2 8 0 4 3 5 1 5 0
relations sister/2 0 1 1 0 4 1 4 0
--
yes

?- ports_profiler::data(addams).
Predicate Fact Rule Call Exit *Exit Fail Redo Error

female/1 2 0 1 1 1 0 1 0
parent/2 8 0 4 3 5 1 5 0

yes

?- ports_profiler::data(addams, parent/2).
Clause Count

1 1
2 1
3 2
4 1
5 1
6 2

yes

5.17.7 Interpreting profiling data

Some useful information that can be inferred from the profiling data include:

• which predicates are called more often (from the call port)

• unexpected failures (from the fail port)

• unwanted non-determinism (from the *exit port)

• performance issues due to backtracking (from the *exit and redo ports)

• predicates acting like a generator of possible solutions (from the *exit and redo ports)

• inefficient indexing of predicate clauses (from the fact, rule, and call ports)

• clauses that are never used or seldom used

The profiling data should be analyzed taking into account the expected behavior for the profiled predicates.

448 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

5.17.8 Profiling Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to compile as objects. For example, if the
Prolog module file is named module.pl, try:

| ?- logtalk_load(module, [debug(on), source_data(on)]).

Due to the lack of standardization of module systems and the abundance of proprietary extensions, this
solution is not expected to work for all cases.

5.17.9 Profiling plain Prolog code

This tool can also be applied to plain Prolog code. For example, if the Prolog file is named code.pl, simply
define an object including its code and declaring as public any predicates that you want to use as messages
to the object. For example:

:- object(code).

:- public(foo/2).
:- include('code.pl').

:- end_object.

Save the object to an e.g. code.lgt file in the same directory as the Prolog file and then load it in debug
mode:

| ?- logtalk_load(code, [debug(on), source_data(on)]).

In alternative, use the object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load([os(loader), hook_objects(object_wrapper_hook)]).
...

| ?- logtalk_load(
code,
[hook(object_wrapper_hook), debug(on),
source_data(on), context_switching_calls(allow)]

).

In this second alternative, you can then use the (<<)/2 context switch control construct to call the wrapped
predicates. E.g.

| ?- code<<foo(X, Y).

With either wrapping solution, pay special attention to any compilation warnings that may signal issues that
could prevent the plain Prolog code of working as-is when wrapped by an object. Often any required changes
are straight-forward (e.g. adding use_module/2 directives for called module library predicates).

5.17. ports_profiler 449

The Logtalk Handbook, Release v3.61.0

5.17.10 Known issues

Determinism information is currently not available when using Lean Prolog or Quintus Prolog as backend
compilers.

5.18 profiler

This tool contains simple wrappers for selected Prolog profiler tools.

5.18.1 Loading

This tool can be loaded using the query:

?- logtalk_load(profiler(loader)).

For sample queries, please see the SCRIPT.txt file in the tool directory.

5.18.2 Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(profiler(tester)).

5.18.3 Supported backend Prolog compilers

Currently, this tool supports the profilers provided with SICStus Prolog 4, SWI-Prolog, and YAP. The tool
includes two files:

• yap_profiler.lgt

simple wrapper for the YAP count profiler

• sicstus_profiler.lgt

simple wrapper for the SICStus Prolog 4 profiler

Logtalk also supports the YAP tick profiler (using the latest YAP development version) and the SWI-Prolog
XPCE profiler. When using the XPCE profiler, you can avoid profiling the Logtalk compiler (which is invoked
e.g. when you use the (::)/2 message-sending operator at the top-level interpreter) by compiling your code
with the optimize flag turned on:

?- set_logtalk_flag(optimize, on).
true.

?- use_module(library(statistics)).
true.

?- profile(... :: ...).
...

Given that prolog_statistics:profile/1 is a meta-predicate, Logtalk will compile its argument before
calling it thanks to the goal_expansion/2 hook predicate definitions in the adapter file. Without this hook
definition, you would need to use instead (to avoid profiling the compiler itself):

450 Chapter 5. Developer Tools

The Logtalk Handbook, Release v3.61.0

?- logtalk << (prolog_statistics:profile(... :: ...)).
...

In either case, Don’t forget, however, to load the prolog_statistics module before using or compiling calls
to the profile/1 to allow the Logtalk compiler to access its meta-predicate template.

The profiler support attempts to conceal internal Logtalk compiler/runtime predicates and the generated
entity predicates that implement predicate inheritance. Calls to internal compiler and runtime predicates
have functors starting with $lgt_. Calls to predicates with functors such as _def, _dcl, or _super, used to
implement inheritance, may still be listed in a few cases. Note that the time and the number of calls/redos
of concealed predicates is added to the caller predicates.

5.18.4 Compiling source code for profiling

In order to get user-level object and predicate names instead of compiler generated internal names when
using the SWI-Prolog and YAP profilers, you must set code_prefix flag to a character other than the default
$ before compiling your source code. For example:

?- set_logtalk_flag(code_prefix, '.').

See also the settings-sample.lgt file for automating the necessary setup at Logtalk startup.

5.19 tutor

This tool adds explanations and suggestions to selected compiler warning and error messages. It’s most
useful for new users not yet familiar with the compiler and runtime warning and error messages.

5.19.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#tutor

5.19.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(tutor(loader)).

5.19.3 Usage

Simply load the tool at startup (e.g. from a settings file).

5.19. tutor 451

../../docs/library_index.html#tutor

The Logtalk Handbook, Release v3.61.0

5.20 wrapper

This is a prototype tool to help port a plain Prolog application to Logtalk. It can also be used to enable
applying other Logtalk developer tools, such as the documenting and diagramming tools, to plain Prolog
code.

The tool takes a directory of Prolog files or a list of Prolog files, loads and wraps the code in each file using
an object wrapper, and advises on missing directives to be added to those objects by using the compiler lint
checker and the reflection API. The user can then either save the generated wrapper objects or copy and
paste the printed advice into the Prolog files (updating them to Logtalk files by adding the object opening
and closing directives to the Prolog files). The wrapper objects use include/1 directives to include the Prolog
files and can be loaded for testing and for use with other tools. The wrapped Prolog files are not modified
and thus require only read permission.

5.20.1 API documentation

This tool API documentation is available at:

../../docs/library_index.html#wrapper

5.20.2 Loading

This tool can be loaded using the query:

| ?- logtalk_load(wrapper(loader)).

5.20.3 Workflows

The typical porting workflow is simply:

| ?- wrapper::rdirectory(root_directory_of_prolog_code).
...
| ?- wrapper::save.
...

See the next section on how to customize the API calls for more flexible processing.

5.20.4 Customization

The tool can be customized by extending the wrapper object. A common scenario is when wrapping plain
Prolog code just to take advantage, for example, of the documenting tool or for generating cross-referencing
diagrams. In this case, we can workaround any compiler errors by specializing the inherited definitions
for the term_expansion/2 and goal_expansion/2 predicates and then load the wrapper objects for further
processing by using the include_wrapped_files(false) option described below.

The API predicates also accept a set of options for customization:

• prolog_extensions(Extensions)

list of file name extensions used to recognize Prolog source files (default is ['.pl', '.pro',
'.prolog'])

• logtalk_extension(Extension)

452 Chapter 5. Developer Tools

../../docs/library_index.html#wrapper

The Logtalk Handbook, Release v3.61.0

Logtalk file name extension to be used for the generated wrapper files (default is '.lgt')

• exclude_files(Files)

list of Prolog source files to exclude (default is [])

• exclude_directories(Files)

list of sub-directories to exclude (default is [])

• include_wrapped_files(Boolean)

generate include/1 directives for the wrapped Prolog source files (default is true)

5.20.5 Current limitations

• The tool cannot deal with syntax errors in the Prolog files. These errors usually occur when using
a backend Prolog system different from the one used to compile the original plain Prolog code. A
common cause of syntax errors are operator definitions. These can often be solved by defining those
operators for the Prolog backend used to run Logtalk and this tool. An alternative is to preload the
Prolog files where those operators are declared. Preloading the plain Prolog application can also help
in wrapping it by ensuring that its dependencies are also loaded.

• The tool assumes that all files to be wrapped have different names (even if found in different directo-
ries). If that is not the case, the name conflicts must be manually solved before using the tool.

• There isn’t yet any support for dealing with meta-predicates and advise on missing meta-predicate
directives.

5.20. wrapper 453

The Logtalk Handbook, Release v3.61.0

454 Chapter 5. Developer Tools

CHAPTER

SIX

LIBRARIES

The documentation of each library can also be found in the library directory in the NOTES.md file.

6.1 Overview

This folder contains libraries of useful objects, categories, and protocols. Specific notes about individual
libraries can be found in the corresponding library directory NOTES.md files.

A plain Prolog version of the Unicode 6.2 standard is also included in the unicode_data folder. See its
README.md file for details.

A parallel_logtalk_processes_setup.pl Prolog file is also provided with sample code for selected backend
Prolog compilers for initializing Logtalk processes such that each process uses a unique scratch directory
therefore allowing parallel process execution (e.g. for usage at continuous integration servers). Starting
with Logtalk 3.48.0, this setup is only required in general when running with the clean flag turned off. See
the comments in the file itself for usage instructions.

6.1.1 Library documentation

Specific notes about each library can be found in the corresponding NOTES.md files. HTML documentation
for each library API can be found on the docs directory (open the ../docs/index.html file with your web
browser). The documentation for these libraries can be regenerated using the shell scripts ../scripts/
update_html_docs.sh and ../scripts/update_svg_diagrams.sh.

6.1.2 Loading libraries

All the individual libraries can be loaded using the <library name>(loader) notation as argument for the
compiling and loading predicates. For example:

| ?- logtalk_load(random(loader)).

For existing applications still relying on the old library *_loader.lgt files, these loader files are still provided
but are considered deprecated.

There is a file named all_loader.lgt that will load all libraries. Simply type the goal:

| ?- logtalk_load(library(all_loader)).

As a general rule, always use the corresponding loader file to load a library. Most library entities are part
of small hierarchies or depend on other libraries and thus cannot be loaded and compiled separately (e.g.

455

The Logtalk Handbook, Release v3.61.0

the list object implements the listp protocol and is part of a basic types hierarchy). Using the loader files
takes care of all dependencies and also ensures compilation in optimized mode.

6.1.3 Testing libraries

Most of the libraries include unit tests in their directory, together with a tester.lgt file for running them.
For example, to run the tests for the random library, we can use the goal:

| ?- logtalk_load(random(tester)).

To run all libraries tests, we can use the logtalk_tester automation script from the library directory at the
root of the Logtalk distribution. For example, assuming the Logtalk user directory is ~/logtalk and that we
want to run the tests using ECLiPSe as the backend Prolog compiler:

$ cd ~/logtalk/library
$ logtalk_tester -p eclipse

6.1.4 Credits

Some code in this library is based on public domain Prolog code, in particular, code adopted from the
Edinburgh Prolog library. The definition of predicate reverse/2 in object list is from Richard O’Keefe and
can be found in its book “The Craft of Prolog”.

Some elements of this library are inspired by Richard O’Keefe library proposal available at:

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

Some libraries, or part of libraries, are either ports of Prolog system libraries or inspired by Prolog system
libraries. See the individual library notes for details. See also the NOTICE.txt file at the root of the Logtalk
distribution for copyright information on third-party source code.

6.1.5 Other notes

Some files contained in this directory represent work in progress and are not loaded by default by any loader
utility file.

6.2 arbitrary

The arbitrary library defines an arbitrary category providing predicates for generating random values
for selected types to the type object, complementing its type checking predicates. Both the object and
the category predicates can be extended by the user with definitions for new types by defining clauses for
multifile predicates. This library is notably used in the QuickCheck implementation by the lgtunit tool.

456 Chapter 6. Libraries

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

The Logtalk Handbook, Release v3.61.0

6.2.1 API documentation

Open the ../../docs/library_index.html#arbitrary link in a web browser.

6.2.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(arbitrary(loader)).

6.2.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(arbitrary(tester)).

6.2.4 Usage

The arbitrary category complements the type object and thus its predicates are accessed via this object. For
example:

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

To define a generator of arbitrary values for a type, define a clause for the arbitrary::arbitrary/1 multifile
predicate specifying the type and a clause for the arbitrary::arbitrary/2 multifile predicate generating an
arbitrary term of the specified type. For example:

:- multifile(arbitrary::arbitrary/1).
arbitrary::arbitrary(foo).

:- multifile(arbitrary::arbitrary/2).
arbitrary::arbitrary(foo, Arbitrary) :-

...

Optionally, define a clause for the arbitrary::shrinker/1 multifile predicate to declare a new shrinker and a
arbitrary::shrink/3 multifile predicate for shrinking arbitrary values for QuickCheck usage. For example:

:- multifile(arbitrary::shrinker/1).
arbitrary::shrinker(foo).

:- multifile(arbitrary::shrink/3).
arbitrary::shrink(foo, Large, Small) :-

...

The shrink/3 should either succeed or fail but never throw an exception.

It is also possible to define edge cases for a given type for use with QuickCheck implementations. For
example:

6.2. arbitrary 457

../../docs/library_index.html#arbitrary

The Logtalk Handbook, Release v3.61.0

:- multifile(arbitrary::edge_case/2).
arbitrary::edge_case(cost, 0).

Edge cases are usually tried before resorting to generating arbitrary values for a type.

The arbitrary category also provides access to the pseudo-random generator it uses via the get_seed/1 and
set_seed/1. This allows sequences of arbitrary values to be reproduced. For example:

| ?- type::get_seed(Seed).
Seed = seed(3172, 9814, 20125)
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -113
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = 446

| ?- type::set_seed(seed(3172, 9814, 20125)).
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -113
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = 446
yes

The seed should be regarded as an opaque term and handled using the get_seed/1 and set_seed/1 predi-
cates. These predicates are notably used in the QuickCheck implementation provided by the lgtunit tool.

458 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

6.2.5 Examples

See the implementation of the optionals and expecteds libraries. See also the test_files/custom.lgt
source file for an example of defining custom arbitrary term generators.

6.2.6 Known issues

Some Prolog systems either don’t support the null character or provide buggy results when calling
char_code/2 with a code of zero. When that’s the case, the null character is excluded when generating
arbitrary characters or character codes.

Generating arbitrary Unicode characters (instead of Unicode codepoints) is inherently problematic as the
process first generates codepoints and then tries to use the standard char_code/2 to convert them to char-
acters. But, depending on the backend Prolog system and its internal (if any) Unicode normalization, it may
not be possible to convert a codepoint to a single character.

6.3 assignvars

The assignvarsp protocol declares the predicates used for logical assignment of Prolog terms developed by
Nobukuni Kino.

The assignvars object provides a declarative implementation of the assignvarsp protocol. It can be used
with any backend Prolog compiler.

The nd_assignvars object provides a non-declarative but faster implementation of the assignvarsp protocol.
It can be used with the following backend Prolog compilers: B-Prolog, CxProlog, ECLiPSe, GNU Prolog, Qu-
Prolog, SICStus Prolog, SWI-Prolog, and YAP.

For more information on assignvars, please consult the URL:

https://web.archive.org/web/20160818050049/http://www.kprolog.com/en/logical_assignment/

The representation of assignable terms should be regarded as an opaque term and only accessed using the
library predicates.

6.3.1 API documentation

Open the ../../docs/library_index.html#assignvars link in a web browser.

6.3.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(assignvars(loader)).

6.3. assignvars 459

https://web.archive.org/web/20160818050049/http://www.kprolog.com/en/logical_assignment/
../../docs/library_index.html#assignvars

The Logtalk Handbook, Release v3.61.0

6.3.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(assignvars(tester)).

6.4 base64

The base64 library provides predicates for parsing and generating data in the Base64 and Base64URL formats
as per the specification found at:

https://tools.ietf.org/html/rfc4648

6.4.1 API documentation

Open the ../../docs/library_index.html#base64 link in a web browser.

6.4.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(base64(loader)).

6.4.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(base64(tester)).

6.4.4 Encoding

Encoding a list of bytes in Base64 format is accomplished by the base64::generate/2 predicate. For example:

| ?- atom_codes('Hello world!', Bytes),
base64::generate(atom(Base64), Bytes).

Base64 = 'SGVsbG8gd29ybGQh'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

| ?- atom_codes('Hello world!', Bytes),
base64::generate(codes(Base64), Bytes).

Base64 = [83,71,86,115,98,71,56,103,100,50,57,121,98,71,81,104]
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

The Base64 result can also be represented using a list of chars, written to a file or to a stream. See the API
documentation for details.

For safe encoding of URLs, use instead the Base64URL format. For example:

460 Chapter 6. Libraries

https://tools.ietf.org/html/rfc4648
../../docs/library_index.html#base64

The Logtalk Handbook, Release v3.61.0

| ?- base64url::generate(atom(Base64URL), 'https://logtalk.org').
Base64URL == 'aHR0cHM6Ly9sb2d0YWxrLm9yZw'
yes

The Base64URL can also be represented using a list of chars or a list of codes. The input URL should be in
the same format.

6.4.5 Decoding

Decoding of Base64 data is accomplished using the base64::parse/2 predicate. For example:

| ?- base64::parse(atom('SGVsbG8gd29ybGQh'), Bytes),
atom_codes(Atom, Bytes).

Atom = 'Hello world!'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

| ?- base64::parse(chars(['S','G','V',s,b,'G','8',g,d,'2','9',y,b,'G','Q',h]), Bytes),
atom_codes(Atom, Bytes).

Atom = 'Hello world!'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

The base64::parse/2 predicate accepts other input source such as a file or a stream. See the API documen-
tation for details.

For decoding of URLs in the Base64URL format, use the base64url::parse/2 predicate. For example:

| ?- base64url::parse(atom('aHR0cHM6Ly9sb2d0YWxrLm9yZw'), URL).
URL == 'https://logtalk.org'
yes

The base64url::parse/2 predicate also accepts a list of chars or a list of codes as input. See the API docu-
mentation for details.

6.5 basic_types

The basic_types library is a virtual library that loads only basic types from the types library:

• comparingp

• termp, term

• atomic, atom, number, float, integer

• compound, listp, list

• type

6.5. basic_types 461

The Logtalk Handbook, Release v3.61.0

6.5.1 API documentation

Open the ../../docs/library_index.html#types link in a web browser.

6.5.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(basic_types(loader)).

6.5.3 Testing

To test this library predicates, load the tester.lgt file for the types library:

| ?- logtalk_load(types(tester)).

6.6 coroutining

The coroutining object provides a portable abstraction over how common coroutining predicates are made
available by the supported backend Prolog systems (ECLiPSe, LVM, SICStus Prolog, SWI-Prolog, Trealla
Prolog, and YAP) that provide them. Partial support for XSB is provided (the predicate frozen/2 is not
available and calls to it fail).

Calls to the library predicates are inlined when compiled with the optimize flag turned on. In this case, there
is no overhead compared with calling the abstracted predicates directly.

6.6.1 API documentation

Open the ../../docs/library_index.html#coroutining link in a web browser.

6.6.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(coroutining(loader)).

6.6.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(coroutining(tester)).

462 Chapter 6. Libraries

../../docs/library_index.html#types
../../docs/library_index.html#coroutining

The Logtalk Handbook, Release v3.61.0

6.7 cbor

The cbor library implements predicates for importing and exporting data in the Concise Binary Object Rep-
resentation (CBOR) format:

• https://www.rfc-editor.org/rfc/rfc8949.html

• http://cbor.io/

This library is a work-in-progress. Currently it requires a backend supporting unbounded integer arithmetic.

6.7.1 Representation

• Maps are represented using curly-bracketed terms, {Pairs}, where each pair uses the representation
Key-Value.

• Arrays are represented using lists.

• Byte strings uses bytes(List) compound terms.

• Text strings can be represented as atoms, chars(List), or codes(List). The default when decoding
is to use atoms when using the cbor object. To decode text strings into lists of chars or code, use the
cbor/1 with the parameter bound to chars or codes. For example:

| ?- cbor::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = hello
yes

| ?- cbor(atom)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = hello
yes

| ?- cbor(chars)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = chars([h,e,l,l,o])
yes

| ?- cbor(codes)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = codes([104,101,108,108,111])
yes

• Tagged data uses tag(Tag, Data) compound terms.

• Simple values can be represented using simple(Simple) compound terms.

• The CBOR elements false, true, null, and undefined are represented by, respectively, the @false,
@true, @null, and @undefined compound terms.

• The compound terms @infinity, @negative_infinity, and @not_a_number are used to represent the
corresponding CBOR elements.

• Only some backends distinguish between positive zero and negative zero. The compound terms @zero
and @negative_zero can be used as an alternative for encoding. The decoder, however, produces the
0.0 and -0.0 floats.

6.7. cbor 463

https://www.rfc-editor.org/rfc/rfc8949.html
http://cbor.io/

The Logtalk Handbook, Release v3.61.0

6.7.2 Encoding

Encoding is accomplished using the generate/2 predicate. For example:

| ?- cbor::generate([a,{b-c}], Encoding).
Encoding = [0x9f,0x61,0x61,0xbf,0x61,0x62,0x61,0x63,0xff,0xff]
yes

The encoding of arrays and maps uses indefinite-length encoding. All floats are currently encoded using
decimal fractions. Encoding indicators and big floats are not currently supported.

6.7.3 Decoding

Decoding is accomplished using the parse/2 predicate. For example:

| ?- cbor::parse([0x9f,0x61,0x61,0xbf,0x61,0x62,0x61,0x63,0xff,0xff], Term).
Term = [a,{b-c}]
yes

6.7.4 API documentation

Open the ../../docs/library_index.html#cbor link in a web browser.

6.7.5 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(cbor(loader)).

6.7.6 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(cbor(tester)).

6.8 core

This library consists of built-in entities.

464 Chapter 6. Libraries

../../docs/library_index.html#cbor

The Logtalk Handbook, Release v3.61.0

6.8.1 API documentation

See this Handbook “Objects”, “Protocols”, and “Categories” sections.

6.8.2 Loading

All entities in this library are automatically loaded at Logtalk startup.

6.8.3 Testing

Tests for this library can be found in the tests/logtalk/entities directory.

6.9 csv

The csv library provides predicates for reading and writing CSV files and streams:

https://www.rfc-editor.org/rfc/rfc4180.txt

The main object, csv/3, is a parametric object allowing passing options for the handling of the header of
the file, the fields separator, and the handling of double-quoted fields. The cvs object extends the csv/3
parametric object using default option values.

The library also include predicates to guess the separator and guess the number of columns in a given CSV
file.

Files and streams can be read into a list of rows (with each row being represented by a list of fields) or
asserted using a user-defined dynamic predicate. Reading can be done by first loading the whole file (using
the read_file/2-3 predicates) into memory or line by line (using the read_file_by_line/2-3 predicates).
Reading line by line is usually the best option for parsing large CSV files.

Data can be saved to a CSV file or stream by providing the object and predicate for accessing the data plus
the name of the destination file or the stream handle or alias.

6.9.1 API documentation

Open the ../../docs/library_index.html#csv link in a web browser.

6.9.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(csv(loader)).

6.9. csv 465

https://www.rfc-editor.org/rfc/rfc4180.txt
../../docs/library_index.html#csv

The Logtalk Handbook, Release v3.61.0

6.9.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(csv(tester)).

6.9.4 Usage

The csv(Header, Separator, IgnoreQuotes) parametric object allows passing the following options:

1. Header: possible values are missing, skip, and keep.

2. Separator: possible values are comma, tab, semicolon, and colon.

3. IgnoreQuotes: possible values are true to ignore double quotes surrounding field data and false to
preserve the double quotes.

The csv object uses the default values keep, comma, and false.

When writing CSV files or streams, set the quoted fields option to false to write all non-numeric fields
double-quoted (i.e. escaped).

The library objects can also be used to guess the separator used in a CSV file if necessary. For example:

| ?- csv::guess_separator('test_files/crlf_ending.csv', Separator).
Is this the proper reading of a line of this file (y/n)? [aaa,bb,ccc]
|> y.

Separator = comma ?

This information can then be used to read the CSV file returning a list of rows:

| ?- csv(keep, comma, true)::read_file('test_files/crlf_ending.csv', Rows).

Rows = [[aaa,bbb,ccc],[zzz,yyy,xxx]] ?

Alternatively, The CSV data can be saved using a public and dynamic object predicate. For example:

| ?- csv(keep, comma, true)::read_file('test_files/crlf_ending.csv', user, p/3).
yes

| ?- p(A,B,C).

A = aaa
B = bbb
C = ccc ? ;

A = zzz
B = yyy
C = xxx

Given a predicate representing a table, the predicate data can be written to a file or stream. For example:

| ?- csv(keep, comma, true)::write_file('output.csv', user, p/3).
yes

leaving the content just as the original file thanks to the use of true for the IgnoreQuotes option:

466 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

aaa,bbb,ccc
zzz,yyy,xxx

Otherwise:

| ?- csv(keep, comma, false)::write_file('output.csv', user, p/3).
yes

results in the following file content:

"aaa","bbb","ccc"
"zzz","yyy","xxx"

The guess_arity/2 method, to identify the arity, i. e. the number of fields or columns per record in a given
CSV file, for example:

| ?- csv(keep, comma, false)::guess_arity('test_files/crlf_ending.csv', Arity).
Is this the proper reading of a line of this file (y/n)? [aaa,bbb,ccc]
|> y.

Arity = 3

6.10 dates

The date object implements some useful calendar date predicates.

The time object implements some useful time predicates.

Please note that the functionality of these objects depends on the chosen Prolog support for accessing the
operating system time and date.

6.10.1 API documentation

Open the ../../docs/library_index.html#dates link in a web browser.

6.10.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(dates(loader)).

6.10. dates 467

../../docs/library_index.html#dates

The Logtalk Handbook, Release v3.61.0

6.11 dependents

The observer and subject categories implement the Smalltalk dependents handling mechanism. This mech-
anism can be used as an alternative to Logtalk system-wide support for event-driven programming.

6.11.1 API documentation

Open the ../../docs/library_index.html#dependents link in a web browser.

6.11.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(dependents(loader)).

6.12 dictionaries

This library provides a dictionary (also know as associative array, map, or symbol table) protocol and binary
tree, AVL tree, and Red–Black tree implementations. The different representations of a dictionary should be
regarded as opaque terms and only accessed using the library predicates.

6.12.1 API documentation

Open the ../../docs/library_index.html#dictionaries link in a web browser.

6.12.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(dictionaries(loader)).

6.12.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(dictionaries(tester)).

468 Chapter 6. Libraries

../../docs/library_index.html#dependents
../../docs/library_index.html#dictionaries

The Logtalk Handbook, Release v3.61.0

6.12.4 Usage

First, select the dictionary implementation that you want to use. For cases where the number of elements
is relatively small and performance is not critical, bintree can be a good choice. For other cases, avltree
or rbtree are likely better choices. If you want to compare the performance of the implementations, either
define an object alias or use a uses/2 directive so that you can switch between implementations by simply
changing the alias definition or the first argument of the directive. Note that you can switch between
implementations at runtime without code changes by using a parameter variable in the first argument of a
uses/2 directive.

To create a new dictionary, you can use the new/1 predicate. For example:

| ?- avltree::new(Dictionary).
Dictionary = ...
yes

You can also create a new dictionary from a list of key-value pairs by using the as_dictionary/2 predicate.
For example:

| ?- avltree::as_dictionary([a-1,c-3,b-2], Dictionary).
Dictionary = ...
yes

Several predicates are provided for inserting key-value pairs, lookup key-value pairs updating the value
associated with a key, and deleting key-value pairs. For example:

| ?- avltree::(
new(Dictionary0),
insert(Dictionary0, a, 1, Dictionary1),
update(Dictionary1, a, 2, Dictionary2),
lookup(a, Value, Dictionary2)

).
Dictionary0 = ...,
Dictionary1 = ...,
Dictionary2 = ...,
Value = 2
yes

For details on these and other provided predicates, consult the library API documentation.

6.12.5 Credits

The AVL tree implementation is an adaptation to Logtalk of the assoc SWI-Prolog library authored by
R.A.O’Keefe, L.Damas, V.S.Costa, Glenn Burgess, Jiri Spitz, and Jan Wielemaker. Additional predicates au-
thored by Paulo Moura.

The Red–Black tree implementation is an adaptation to Logtalk of the rbtrees Prolog library authored by
Vitor Santos Costa.

6.12. dictionaries 469

The Logtalk Handbook, Release v3.61.0

6.13 dif

The dif object provides a portable abstraction over how the dif/2 predicate is made available by the sup-
ported backend Prolog systems that implement it (B-Prolog, ECLiPSe, Scryer Prolog, SICStus Prolog, SWI-
Prolog, Trealla Prolog, XSB, and YAP).

Calls to the library predicates are inlined when compiled with the optimize flag turned on. In this case, there
is no overhead compared with calling the abstracted predicates directly.

6.13.1 API documentation

Open the ../../docs/library_index.html#dif link in a web browser.

6.13.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(dif(loader)).

6.13.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(dif(tester)).

6.14 edcg

This library provides a Logtalk port of the Peter Van Roy’s extended DCG implementation. For full documen-
tation on EDCGs, see:

https://www.info.ucl.ac.be/%7Epvr/edcg.html

This Logtalk version defines a hook object, edcg. Source files defining EDCGs must be compiled using the
compiler option hook(edcg):

| ?- logtalk_load(source, [hook(edcg)]).

Alternatively, the following directive can be added at the beginning of the source file containing the EDCGs:

:- set_logtalk_flag(hook, edcg).

The hook object automatically adds the EDCGs -->> infix operator scoped to the source file.

This port has simplified by copying and then modifying Michael Hendricks’s edcg repo at:

https://github.com/mndrix/edcg

A notable difference is that Michael’s version declares Peter’s original predicates for declaring accumulators
and predicates using the hidden arguments as multifile predicates. But this is risky as two independent
EDCGs may use e.g. the same accumulator names and introduce conflicts. The Logtalk version uses instead
the edcg hook object internal state to temporarily save those predicates in order to parse the corresponding
EDCGs.

470 Chapter 6. Libraries

../../docs/library_index.html#dif
https://www.info.ucl.ac.be/%7Epvr/edcg.html
https://github.com/mndrix/edcg

The Logtalk Handbook, Release v3.61.0

6.14.1 API documentation

Open the ../../docs/library_index.html#edcg link in a web browser.

6.14.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(edcg(loader)).

6.14.3 Testing

To test this library predicates, load the tester.lgt file of the edcgs example:

| ?- logtalk_load(edcgs(tester)).

6.14.4 Usage

Follows the usage documentation written by Michael Hendricks (with a contribution from Peter Ludemann),
used here with permission, with the necessary changes for the Logtalk port.

% declare accumulators
acc_info(adder, X, In, Out, integer::plus(X,In,Out)).

% declare predicates using these hidden arguments
pred_info(len,0,[adder,dcg]).
pred_info(increment,0,[adder]).

increment -->>
% add one to the accumulator
[1]:adder.

len(Xs,N) :-
len(0,N,Xs,[]).

len -->>
% 'dcg' accumulator has an element
[_],
!,
% increment the 'adder' accumulator
increment,
len.

len -->>
[].

6.14. edcg 471

../../docs/library_index.html#edcg

The Logtalk Handbook, Release v3.61.0

6.14.5 Introduction

DCG notation gives us a single, hidden accumulator. Extended DCG notation (implemented by this library)
lets predicates have arbitrarily many hidden accumulators. As demonstrated by the synopsis above, those
accumulators can be implemented with arbitrary goals (like integer::plus/3).

Benefits of this library:

• avoid tedium and errors from manually threading accumulators through your predicates

• add or remove accumulators with a single declaration

• change accumulator implementation with a single declaration (ex, switching from ordsets to rbtrees)

6.14.6 Syntax

Extended DCG syntax is very similar to DCG notation. An EDCG is created with clauses whose neck is the
-->> operator. The following syntax is supported inside an EDCG clause:

• {Goal} - don’t expand any hidden arguments of Goal

• Goal - expand all hidden arguments of Goal that are also in the head. Those hidden arguments not in
the head are given default values.

• Goal:L - If Goal has no hidden arguments then force the expansion of all arguments in L in the order
given. If Goal has hidden arguments then expand all of them, using the contents of L to override the
expansion. L is either a term of the form Acc, Acc(Left,Right), Pass, Pass(Value), or a list of such
terms. When present, the arguments Left, Right, and Value override the default values of arguments
not in the head.

• List:Acc - Accumulate a list of terms in the accumulator Acc

• List - Accumulate a list of terms in the accumulator dcg

• X/Acc - Unify X with the left term for the accumulator Acc

• Acc/X - Unify X with the right term for the accumulator Acc

• X/Acc/Y - Unify X with the left and Y with the right term for the accumulator Acc

• insert(X,Y):Acc - Insert the arguments X and Y into the chain implementing the accumulator Acc. This
is useful when the value of the accumulator changes radically because X and Y may be the arguments
of an arbitrary relation

• insert(X,Y) - Insert the arguments X and Y into the chain implementing the accumulator dcg. This
inserts the difference list X-Y into the accumulated list

6.14.7 Declaration of Predicates

Predicates are declared with facts of the following form:

pred_info(Name, Arity, List).

The predicate Name/Arity has the hidden parameters given in List. The parameters are added in the order
given by List and their names must be atoms.

472 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

6.14.8 Declaration of Accumulators

Accumulators are declared with facts in one of two forms. The short form is:

acc_info(Acc, Term, Left, Right, Joiner).

The long form is:

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart).

In most cases the short form gives sufficient information. It declares the accumulator Acc, which must be an
atom, along with the accumulating function, Joiner, and its arguments Term, the term to be accumulated,
and Left & Right, the variables used in chaining.

The long form of acc_info is useful in more complex programs. It contains two additional arguments, LStart
and RStart, that are used to give default starting values for an accumulator occurring in a body goal that
does not occur in the head. The starting values are given to the unused accumulator to ensure that it will
execute correctly even though its value is not used. Care is needed to give correct values for LStart and
RStart. For DCG-like list accumulation both may remain unbound.

Two conventions are used for the two variables used in chaining depending on which direction the accumula-
tion is done. For forward accumulation, Left is the input and Right is the output. For reverse accumulation,
Right is the input and Left is the output.

6.14.9 Declaration of Passed Arguments

Passed arguments are conceptually the same as accumulators with =/2 as the joiner function. Passed argu-
ments are declared as facts in one of two forms. The short form is:

pass_info(Pass).

The long form is:

pass_info(Pass, PStart).

In most cases the short form is sufficient. It declares a passed argument Pass, that must be an atom. The
long form also contains the starting value PStart that is used to give a default value for a passed argument
in a body goal that does not occur in the head. Most of the time this situation does not occur.

6.14.10 Additional documentation

Peter Van Roy’s page: Declarative Programming with State

Technical Report UCB/CSD-90-583 Extended DCG Notation: A Tool for Applicative Programming in Prolog
by Peter Van Roy

• The Tech Report’s PDF is here

A short Wikipedia article on DCGs and extensions.

6.14. edcg 473

https://www.info.ucl.ac.be/~pvr/edcg.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/5471.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/CSD-90-583.pdf
https://en.wikipedia.org/wiki/Definite_clause_grammar#Extensions

The Logtalk Handbook, Release v3.61.0

6.15 events

The objects event_registry, before_event_registry, and after_event_registry implement convenient
predicates for registering before and after events.

The code makes use of the monitoring built-in protocol, which declares the two basic event handler predi-
cates (before/3 and after/3). You will need to refer to this protocol in your objects if you want to use the
super control structure (^^/1) with these predicates.

The monitor object implements more sophisticated event handling predicates.

6.15.1 API documentation

Open the ../../docs/library_index.html#events link in a web browser.

6.15.2 Loading

To load all entities in this library, load the loader.lgt loader file:

| ?- logtalk_load(events(loader)).

6.16 expand_library_alias_paths

This library provides provides a hook object, expand_library_alias_paths, for expanding library alias paths
in logtalk_library_path/2 facts in source files. It is mainly used when embedding Logtalk and Logtalk
applications.

6.16.1 API documentation

Open the ../../docs/library_index.html#expand-library-alias-paths link in a web browser.

6.16.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(expand_library_alias_paths(loader)).

6.16.3 Usage

Use the hook/1 option when compiling a source file:

| ?- logtalk_load(my_source_file, [hook(expand_library_alias_paths)]).
...

Alternatively, assuming it is the only hook object you are using, you can set it as thew default hook object:

| ?- set_logtalk_flag(hook, expand_library_alias_paths).
...

474 Chapter 6. Libraries

../../docs/library_index.html#events
../../docs/library_index.html#expand-library-alias-paths

The Logtalk Handbook, Release v3.61.0

6.17 expecteds

This library provides an implementation of expected terms with an API that is inspired by the optional library
and C++ standardization proposals for an Expected<T> type. An expected term is an opaque compound term
that either contains an expected value or an error informing why the expected value is not present. Expected
terms provide an alternative to generating an exception (or a failure) when something unexpected happens
when asking for a value. This allows e.g. separating the code that constructs expected terms from the code
that processes them, which is then free to deal if necessary and at its convenience with any unexpected
events.

6.17.1 API documentation

Open the ../../docs/library_index.html#expecteds link in a web browser.

6.17.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(expecteds(loader)).

6.17.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(expecteds(tester)).

6.17.4 Usage

The expected object provides constructors for expected terms. For example:

| ?- expected::of_expected(1, Expected).
...

The created expected terms can then be passed as parameters to the expected/1 parametric object. For
example:

| ?- expected::of_expected(1, Expected), expected(Expected)::or_else(Value, 0).
Expected = expected(1),
Value = 1
yes

| ?- expected::of_unexpected(-1, Expected), expected(Expected)::or_else(Value, 0).
Expected = unexpected(-1),
Value = 0
yes

The either object provides types and predicates for extended type-checking and predicates for handling lists
of expected terms.

6.17. expecteds 475

../../docs/library_index.html#expecteds

The Logtalk Handbook, Release v3.61.0

6.17.5 See also

The optionals library.

6.18 format

The format object provides a portable abstraction over how the de facto standard format/2-3 predicates are
made available by the supported backend Prolog systems. Some system provide these predicates as built-in
predicates while others make them available using a library that must be explicitly loaded.

Calls to the library predicates are inlined when compiled with the optimize flag turned on for most of
the backends. When that’s the case, there is no overhead compared with calling the abstracted predicates
directly.

This library provides linter checks for calls to the format/2-3 predicates. Given the differences between
implementation of these predicates among Prolog systems, the linter checks focus on detecting common
errors such as missing arguments and too many arguments. The linter warnings are printed when the
suspicious_calls flag is set to warning (its usual default).

6.18.1 Portability

Some Prolog systems provide only a subset of the expected format specifiers. Notably, table related format
specifiers are only fully supported by a few systems. See the section below on testing.

Only some of the supported Prolog backends provide implementations of the format/2-3 predicates that
allow using not only an atom or a list of character codes for the format string (as de facto standard) but also
using a list of characters. These currently include ECLiPSe, LVM, SICStus Prolog, SWI-Prolog, Trealla Prolog,
and YAP. Therefore, when wide portability is sought, atoms must be used for the format specifier argument.
Some systems, like Scryer Prolog and Tau Prolog, only accept a list of characters for the format string. In this
case, this library will convert the atom format string before calling these systems native implementations.

6.18.2 API documentation

Open the ../../docs/library_index.html#format link in a web browser.

6.18.3 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(format(loader)).

476 Chapter 6. Libraries

../../docs/library_index.html#format

The Logtalk Handbook, Release v3.61.0

6.18.4 Testing

Minimal tests for this library predicates can be run by loading the tester.lgt file:

| ?- logtalk_load(format(tester)).

Detailed tests for the format/2-3 predicates are available in the tests/prolog/predicates directory as part
of the Prolog standards conformance test suite. Use those tests to confirm the portability of the format
specifiers that you want to use.

6.19 gensym

The gensym library implements predicates for generating unique atoms. The public predicates are declared
synchronized to prevent race conditions when using a backend Prolog compiler with multi-threading support.

6.19.1 API documentation

Open the ../../docs/library_index.html#gensym link in a web browser.

6.19.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(gensym(loader)).

6.19.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(gensym(tester)).

6.19.4 Usage

The gensym_core category implements the library predicates. This category is imported by the default gensym
object to provide application global generators. To make the generators local and thus minimize the potential
for generator name clashes, the category can be imported by one of more application objects. Use protected
or private import to restrict the scope of the library predicates.

6.20 genint

The genint library implements predicates for generating positive integers in increasing order. The public
predicates are declared synchronized to prevent race conditions when using a backend Prolog compiler with
multi-threading support.

6.19. gensym 477

../../docs/library_index.html#gensym

The Logtalk Handbook, Release v3.61.0

6.20.1 API documentation

Open the ../../docs/library_index.html#genint link in a web browser.

6.20.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(genint(loader)).

6.20.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(genint(tester)).

6.20.4 Usage

The genint_core category implements the library predicates. This category is imported by the default genint
object to provide application global named counters. To make the counters local and thus minimize the
potential for counter name clashes, the category can be imported by one of more application objects. Use
protected or private import to restrict the scope of the library predicates.

6.21 git

This library provides access to a git project current branch and latest commit data (e.g. commit hash).
Support for using this library on Windows operating-systems is experimental and may or may not work
depending on the used Prolog backend.

6.21.1 API documentation

Open the ../../docs/library_index.html#git link in a web browser.

6.21.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(git(loader)).

478 Chapter 6. Libraries

../../docs/library_index.html#genint
../../docs/library_index.html#git

The Logtalk Handbook, Release v3.61.0

6.21.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(git(tester)).

6.21.4 Usage

All predicates take as first argument a directory, which should be either a git repository directory or a sub-
directory of a git repository directory. The main predicate is commit_log/3. It provides access to the git log
command when called with the --oneline -n 1 --pretty=format: options. By passing as second argument
the desired format, it returns an atom with the formatted output. For example:

| ?- git::commit_log('/Users/pmoura/logtalk3', '%h%n%B', Output),
write(Output), nl.

eccaa1a2a
Update SVG diagrams

Output = 'eccaa1a2a\nUpdate SVG diagrams\n'
yes

See e.g. the official documentation on git log pretty formats for details:

https://git-scm.com/docs/pretty-formats

Convenient predicates are also provided for common used formats such as the commit author and the commit
hash. For example:

| ?- git::commit_author('/Users/pmoura/Documents/Logtalk/logtalk3', Author).

Author = 'Paulo Moura'
yes

| ?- git::commit_hash('/Users/pmoura/Documents/Logtalk/logtalk3', Hash).

Hash = eccaa1a2a9495fef441915bbace84e0a4b0394a2
yes

It’s also possible to get the name of the current local branch. For example:

| ?- git::branch('/Users/pmoura/Documents/Logtalk/logtalk3', Branch).

Branch = master
yes

6.21. git 479

https://git-scm.com/docs/pretty-formats

The Logtalk Handbook, Release v3.61.0

6.22 grammars

This library provides Definite Clause Grammars (DCGs) for common parsing tasks. The DCGs support parsing
both lists of characters (aka chars) and lists of character codes (aka codes).

Currently, three groups of DCGs are available, each defined in its own file:

• blanks (blank_grammars.lgt)

• numbers (number_grammars.lgt)

• IP addresses (ip_grammars.lgt; depends on number_grammars.lgt)

6.22.1 API documentation

Open the ../../docs/library_index.html#grammars link in a web browser.

6.22.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(grammars(loader)).

6.22.3 Testing

Minimal tests for this library predicates can be run by loading the tester.lgt file:

| ?- logtalk_load(grammars(tester)).

6.22.4 Usage

The library uses parametric objects where the single parameter can be either chars or codes. The parameter
must be bound when using the DCGs. For example, when using implicit message sending:

:- uses(blank_grammars(chars), [
white_spaces//0, new_lines//0

]).

6.23 heaps

This library implements minimum and maximum heaps.

480 Chapter 6. Libraries

../../docs/library_index.html#grammars

The Logtalk Handbook, Release v3.61.0

6.23.1 API documentation

Open the ../../docs/library_index.html#heaps link in a web browser.

6.23.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(heaps(loader)).

6.23.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(heaps(tester)).

6.23.4 Credits

Original code by Richard O”Keefe. Adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

6.24 hierarchies

This library provides objects implementing reflection predicates over class and prototype hierarchies.

6.24.1 API documentation

Open the ../../docs/library_index.html#hierarchies link in a web browser.

6.24.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(hierarchies(loader)).

6.24.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(hierarchies(tester)).

6.24. hierarchies 481

../../docs/library_index.html#heaps
../../docs/library_index.html#hierarchies

The Logtalk Handbook, Release v3.61.0

6.25 hook_flows

Hook objects (i.e. objects that define term- and goal-expansion rules) can be combined to define expansion
workflows. While in some cases the expansions are independent and thus can be applied in any order, in
other cases a specific order is required. The hook_pipeline and hook_set parametric objects in this library
implement the two most common scenarios of combining multiple hook objects for the expansion of source
files. These parametric hook objects can be combined to define workflows of any complexity (e.g. a pipeline
where one of the steps is set with an element that is a pipeline). These two basic hook flows can also used
as examples of how to construct your own custom expansion workflows.

6.25.1 API documentation

Open the ../../docs/library_index.html#hook-flows link in a web browser.

6.25.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(hook_flows(loader)).

6.25.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(hook_flows(tester)).

6.25.4 Usage

Pre-processing a source file with a hook object can be accomplished by either compiling the source file using
the option hook(HookObject) or by adding to the top of the file the directive:

:- set_logtalk_flag(hook, HookObject).

Note that set_logtalk_flag/2 directives are local to a source file.

The hook_pipeline(Pipeline) is a parametric object where the parameter is a list of hook objects, inter-
preted as a pre-processing pipeline: the results of a hook object are passed to the next hook object. This
parametric object is used when the expansions must be applied in a specific order. It also allows overriding
the default compiler semantics where term-expansion rules are tried in sequence only until one of them
succeeds.

The hook_set(Set) is a parametric object where the parameter is a list of hook objects, interpreted as a
set of hook objects. For term-expansion, hooks in the set are tried until one of them succeeds. For goal-
expansion, as the compiler expands a goal until a fixed-point is reached, all the hooks objects in the set that
are applicable at any point will be used. This parametric object is used when applying multiple independent
expansions.

When using a backend Prolog compiler that supports modules, it’s also possible to use as parameter a list of
hook modules as long as their names do not coincide with the names of loaded objects.

482 Chapter 6. Libraries

../../docs/library_index.html#hook-flows

The Logtalk Handbook, Release v3.61.0

6.26 hook_objects

This library provides a set of convenient hook objects for defining custom expansion workflows (using e.g.
the hook_flows library) and for debugging. They are usable and useful as-is but should also be regarded
as term- and goal-expansion examples that you can learn from, clone, and change to fit your application
requirements.

6.26.1 API documentation

Open the ../../docs/library_index.html#hook-objects link in a web browser.

6.26.2 Loading

To load all hook objects in this library, load the loader.lgt file:

| ?- logtalk_load(hook_objects(loader)).

To load a specific hook object, e.g. the backend_adapter_hook object:

| ?- logtalk_load(hook_objects(backend_adapter_hook)).

6.26.3 Testing

To test this library hook objects, load the tester.lgt file:

| ?- logtalk_load(hook_objects(tester)).

6.26.4 Usage

The provided hook objects cover different expansion scenarios as follows.

Using the Prolog backend adapter file expansion rules

Useful when defining a custom expansion workflow. This can be accomplished by loading the
backend_adapter_hook.lgt file, which defines a backend_adapter_hook hook object that can be used as
a workflow step.

Restoring the default compiler expansion workflow

In this case, load the default_workflow_hook.lgt file, which defines a default_workflow_hook hook object,
and use the following goal to set the default hook object:

| ?- set_logtalk_flag(hook, default_workflow_hook).

6.26. hook_objects 483

../../docs/library_index.html#hook-objects

The Logtalk Handbook, Release v3.61.0

Preventing applying any (other) user-defined expansion rules

When compiling a source file, we sometimes want to prevent applying expansion rules. This can be accom-
plished by simply loading the identity_hook.lgt file, which defines the identity_hook hook object, whose
expansion rules simply succeed without changing the terms and goals, and setting it as the file specific hook
object writing as the first term in the file the directive:

:- set_logtalk_flag(hook, identity_hook).

Note that the compiler will always convert any grammar rules defined in the file into clauses. Although this
conversion can also be performed as an expansion, grammar rules are part of the Logtalk language. If you
to preserve the grammar rules, use the hook objects described below to write them to a stream.

Expanding grammar rules into clauses independently of the compiler

Load the grammar_rules_hook.lgt and use the term-expansion rules in the grammar_rules_hook object. For
example:

| ?- grammar_rules_hook::term_expansion((a --> [b],c), Clause).

Clause = (a([b|T], C) :- c(T, C))
yes

Using the expansion rules defined in a Prolog module

Load the prolog_module_hook.lgt, which defines the parametric hook object prolog_module_hook(Module).
To use this hook object, you need to instantiate the parameter to the name of the module. For example:

:- set_logtalk_flag(hook, prolog_module_hook(user)).

Wrap the contents of a plain Prolog file as an object

Load the object_wrapper_hook.lgt, which defines the object_wrapper_hook/0-2 hook objects. Use them to
wrap the contents of a plain Prolog file as an object named after the file (optionally implementing a protocol)
or an object with the given name and object relations. Can be used to apply Logtalk developer tools to plain
Prolog code or when porting Prolog application to Logtalk. For example:

| ?- logtalk_load('plain.pl', [hook(object_wrapper_hook)]).
...

| ?- current_object(plain).
yes

Or:

| ?- logtalk_load('world_1.pl', [hook(object_wrapper_hook(some_protocol))]).
...

| ?- current_object(world_1).
yes

(continues on next page)

484 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

| ?- implements_protocol(world_1, Protocol).
Protocol = some_protocol
yes

Or:

| ?- logtalk_load('foo.pl', [hook(object_wrapper_hook(bar,[imports(some_category))]).
...

| ?- current_object(bar).
yes

| ?- imports_category(bar, Category).
Category = some_category
yes

The object_wrapper_hook object sets the context_switching_calls flag to allow for the generated object.
This enables calling the predicates using the (<<)/2 context-switching control construct. But it’s usually
better to define a protocol for the predicates being encapsulated and use instead the object_wrapper_hook/
1-2 objects.

Outputting term-expansion results to a stream

Load the write_to_stream_hook.lgt file and using the write_to_stream_hook(Stream) or
write_to_stream_hook(Stream, Options) hook object. The terms are not modified and thus these
hook objects may be used at any point in an expansion workflow.

Printing entity predicate goals before or after calling them

This is helpful for quick debugging. Load the print_goal_hook.lgt file and use the print_goal_hook hook
object. For example, we can set this hook object as the default hook:

| ?- set_logtalk_flag(hook, print_goal_hook).

Then, edit the entity source code to print selected goals:

foo :-
- bar, % print goal before calling it
+ baz, % print goal after calling it
* quux. % print goal before and after calling it

Suppressing goals

The suppress_goal_hook.lgt file provides the suppress_goal_hook hook object that supports suppressing a
goal in a clause body by prefixing it using the -- operator. We can set this hook object as the default hook
using the goal:

| ?- set_logtalk_flag(hook, suppress_goal_hook).

If the expansion is only to be used in a single file, use instead the source file directive:

6.26. hook_objects 485

The Logtalk Handbook, Release v3.61.0

:- set_logtalk_flag(hook, suppress_goal_hook).

Then, edit entity predicates to suppress goals. For example:

foo :-
bar,
-- baz,
quux.

The suppressed goals are replaced by calls to true/0.

6.27 html

This library provides predicates for generating HTML content using either HTML 5 or XHTML 1.1 formats
from a term representation. The library performs minimal validation, checking only that all elements are
valid. No attempt is made to generate nicely indented output.

Normal elements are represented using a compound term with one argument (the element content) or two
arguments (the element attributes represented by a list of Key=Value or Key-Value pairs and the element
content). The element content can be another element or a list of elements. For example:

ol([type-a], [li(foo), li(bar), li(baz)])

The two exceptions are the pre or code elements whose content is never interpreted as an element or a list
of elements. For example, the fragment:

pre([foo,bar,baz])

is translated to:

<pre>
[foo,bar,baz]
</pre>

Void elements are represented using a compound term with one argument, the (possibly empty) list of
attributes represented by a list of Key=Value or Key-Value pairs. For example:

hr([class-separator])

Atomic arguments of the compound terms are interpreted as element content. Non atomic element content
can be represented as a quoted atom or by using the pre or code elements as explained above.

This library is a work in progress.

486 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

6.27.1 API documentation

Open the ../../docs/library_index.html#html link in a web browser.

6.27.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(html(loader)).

6.27.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(html(tester)).

6.27.4 Generating a HTML document

HTML documents can be generated from a compound term representation and written to a file or a stream.
For example, assuming we want to generate a HTML 5 file:

| ?- html5::generate(
file('hello.html'),
html([lang=en], [head(title('Hello world!')), body(p('Bye!'))])

).

When the second argument is a html/1 or html/2 compound term, a doctype is automatically written. If we
prefer instead e.g. a XHTML 1.1 document, we use the xhtml11 object:

| ?- xhtml11::generate(
file('hello.html'),
html([lang=en], [head(title('Hello world!')), body(p('Bye!'))])

).

6.27.5 Generating a HTML fragment

It’s also possible to generate just a fragment of a (X)HTML document by using a list of compound terms or a
compound term for an element other then html. For example:

| ?- current_output(Stream),
html5::generate(stream(Stream), ul([li(foo), li(bar), li(baz)])).

foo

bar

baz

(continues on next page)

6.27. html 487

../../docs/library_index.html#html

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

Stream = ...

6.27.6 Working with callbacks to generate content

Often we need to programmatically generate HTML content from queries. In other cases, we may have
fixed content that we don’t want to keep repeating (e.g. a navigation bar). The library supports a (::)/2
pseudo-element that sends a message to an object to retrieve content. As an example, assume the following
predicate definition in user:

content(strong('Hello world!')).

This predicate can then be called from the HTML term representation. For example:

| ?- current_output(Stream),
html5::generate(stream(Stream), span(user::content)).

Hello world!

Stream = ...

Note that the callback always takes the form Object::Closure where Closure is extended with a single
argument (to be bound to the generated content). More complex callbacks are possible by using lambda
expressions.

6.27.7 Working with custom elements

The html5 and xhtml11 objects recognize the same set of standard HTML 5 normal and void elements and
generate an error for non-standard elements. If you need to generate HTML content containing custom
elements, define a new object that extends one of the library objects. For example:

:- object(html5custom,
extends(html5)).

normal_element(foo, inline).
normal_element(bar, block).
normal_element(Name, Display) :-

^^normal_element(Name, Display).

:- end_object.

488 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

6.28 ids

This library generates random identifiers given the number of bytes of randomness. The identifiers are
Base64 encoded. By default, 20 bytes (160 bits) are used.

The generation of random identifiers uses the /dev/urandom random number generator when available.
This includes macOS, Linux, *BSD, and other POSIX operating-systems. On Windows, a pseudo-random
generator is used but randomized using the current wall time.

Identifiers can be generated as atoms, lists of characters, or lists of character codes.

See also the uuid library.

6.28.1 API documentation

Open the ../../docs/library_index.html#ids link in a web browser.

6.28.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(ids(loader)).

6.28.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(ids(tester)).

6.28.4 Usage

To generate an identifier using the default 160 bits of randomness:

| ?- ids::generate(Identifier).
Identifier = '2gpMzqAFXBO5mYFIPX1qMkHxgGE='
yes

To generate an identifier represented by an atom using 240 bits (30 bytes) of randomness:

| ?- ids(atom, 30)::generate(Identifier).
Identifier = 'ie/jYcLsqo8ZguCOF1ZNPFDRvJ03Ww5Qa9e0FxRB'
yes

To generate an identifier represented by a list of characters using 64 bits (8 bytes) of randomness:

| ?- ids(chars, 8)::generate(Identifier).
Identifier = ['5','0','8','V',d,'S',c,y,n,o,'A',=]
yes

To generate an identifier represented by a list of character codes using 64 bits (8 bytes) of randomness:

6.28. ids 489

../../docs/library_index.html#ids

The Logtalk Handbook, Release v3.61.0

| ?- ids(codes, 8)::generate(Identifier).
Identifier = [111,81,86,55,99,79,70,77,65,74,103,61]
yes

6.29 intervals

This library provides an intervalp protocol and an interval object that implement basic temporal interval
relations protocol (based on the James F. Allen Interval Algebra work).

6.29.1 API documentation

Open the ../../docs/library_index.html#intervals link in a web browser.

6.29.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(intervals(loader)).

6.29.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(intervals(tester)).

6.30 java

The library Java entities define a minimal abstraction for calling Java from Logtalk. This abstraction makes
use of Logtalk parametric objects and allows creating Java object, accessing Java class fields, and calling Java
class and object methods using syntax closer to Logtalk. It also gives access to some Java utility predicates.

This abstraction was developed primarily to work with the JPL library bundled with SWI-Prolog and YAP.
However, it’s expected to be implementable with alternative Java interfaces found in other backend Prolog
compilers. Currently, a preliminary implementation is also available for JIProlog.

The main idea in this abstraction layer is to use parametric objects where the first parameter holds the Java
reference (usually to a class or object) and an optional second parameter holds the return value. Together
with a forward message handler, this allows the use of Java messages with the same functor and number of
arguments as found in the relevant JavaDocs.

490 Chapter 6. Libraries

../../docs/library_index.html#intervals

The Logtalk Handbook, Release v3.61.0

6.30.1 API documentation

Open the ../../docs/library_index.html#java link in a web browser.

6.30.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(java(loader)).

6.30.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(java(tester)).

6.30.4 Usage

The two main objects in this library are java(Reference, ReturnValue) and java(Reference). Use the latter
if you want to ignore the return value or when calling a void Java method.

The java object implements utility predicates. For some backend Java interfaces such as JPL (available in
SWI-Prolog and YAP) there is also a java_hook hook object for removing any overhead when using this
library abstraction.

For usage examples and unit tests, see the jpl example.

6.30.5 Known issues

When running Java GUI examples on the macOS Terminal application, you may get a Java error saying
that the AWT cannot be started. In alternative, try to run the example from within the SWI-Prolog macOS
application instead of using the shell integration script. This issue is due to a macOS Java issue that’s
orthogonal to both SWI-Prolog/YAP and Logtalk.

6.31 json

The json library provides predicates for parsing and generating data in the JSON format based on the
specification and standard found at:

• https://tools.ietf.org/html/rfc8259

• https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

It includes parametric objects whose parameters allow selecting the representation for parsed JSON text
strings (atom, chars, or codes) and JSON pairs (dash, equal, or colon).

6.31. json 491

../../docs/library_index.html#java
https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

The Logtalk Handbook, Release v3.61.0

6.31.1 API documentation

Open the ../../docs/library_index.html#json link in a web browser.

6.31.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(json(loader)).

6.31.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(json(tester)).

Some of the sample JSON test files are based on examples published at:

https://www.json.org/

6.31.4 Representation

The following choices of syntax has been made to represent JSON elements as terms:

• By default, JSON objects are represented using curly-bracketed terms, {Pairs}, where each pair uses
the representation Key-Value (see below for alternative representations).

• Arrays are represented using lists.

• Text strings can be represented as atoms, chars(List), or codes(List). The default when decoding is
to use atoms when using the json object. To decode text strings into lists of chars or codes, use the
json/1 with the parameter bound to chars or codes. For example:

| ?- json::parse(codes([34,104,101,108,108,111,34]), Term).
Term = hello
yes

| ?- json(atom)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = hello
yes

| ?- json(chars)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = chars([h,e,l,l,o])
yes

| ?- json(codes)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = codes([104,101,108,108,111])
yes

• The JSON values false, true and null are represented by, respectively, the @false, @true and @null
compound terms.

492 Chapter 6. Libraries

../../docs/library_index.html#json
https://www.json.org/

The Logtalk Handbook, Release v3.61.0

The following table exemplifies the term equivalents of JSON elements using default representations for
objects, pairs, and strings:

JSON term
[1,2] [1,2]
true @true
false @false
null @null
-1 -1
[1.2345] [1.2345]
[] []
[2147483647] [2147483647]
[0] [0]
[1234567890123456789] [1234567890123456789]
[false] [@false]
[-2147483648] [-2147483648]
{“a”:null,”foo”:”bar”} {a-@null, foo-bar}
[2.225073858507201e-308] [2.225073858507201e-308]
[0,1] [0,1]
[2.2250738585072014e-308] [2.2250738585072014e-308]
[1.7976931348623157e+308] [1.7976931348623157e+308]
[0.0] [0.0]
[4294967295] [4294967295]
[-1234567890123456789] [-1234567890123456789]
[“foo”] [foo]
[1] [1]
[null] [@null]
[-1.2345] [-1.2345]
[5.0e-324] [5.0e-324]
[-1] [-1]
[true] [@true]
[9223372036854775807] [9223372036854775807]

For JSON objects that are two possible term representations:

JSON object term (curly)
{“a”:1, “b”:2, “c”:3} {a-1, b-2, c-3}
{} {}

and:

JSON object term (list)
{“a”:1, “b”:2, “c”:3} json([a-1, b-2, c-3])
{} json([])

For JSON pairs that are three possible representations:

JSON object term (dash)
{“a”:1, “b”:2, “c”:3} {a-1, b-2, c-3}

and:

6.31. json 493

mailto:\{a-@null

The Logtalk Handbook, Release v3.61.0

JSON object term (equal)
{“a”:1, “b”:2, “c”:3} {a=1, b=2, c=3}

and:

JSON object term (colon)
{“a”:1, “b”:2, “c”:3} {a:1, b:2, c:3}

By default, the curly-term representation and the dash pair representation are used. The json/3 parametric
object allows selecting the desired representation choices. For example:

| ?- json(curly,dash,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = {a-1, b-2, c-3}
yes

| ?- json(list,equal,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = json([a=1, b=2, c=3])
yes

| ?- json(curly,colon,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = {a:1, b:2, c:3}
yes

6.31.5 Encoding

Encoding is accomplished using the generate/2 predicate. For example:

| ?- json::generate(codes(Encoding), [a,{b-c}]).
Encoding = [91,34,97,34,44,123,34,98,34,58,34,99,34,125,93]
yes

Alternatively:

| ?- json::generate(chars(Encoding), [a,{b-c}]).
Encoding = ['[','"',a,'"',',','{','"',b,'"',:,'"',c,'"','}',']']
Yes

| ?- json::generate(atom(Encoding), [a,{b-c}]).
Encoding = '["a",{"b":"c"}]'
Yes

Notice that generate/2 takes, as second argument, a Prolog term that corresponds to the JSON Syn-
tax in Prolog and produces the corresponding JSON output in the format specified in the first argument:
(codes(Variable), stream(Stream), file(File), chars(Variable) or atom(Variable)).

494 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

6.31.6 Decoding

Decoding is accomplished using the parse/2 predicate. For example, to decode a given json file:

| ?- json::parse(file('simple/roundtrip_array_obj_array.json'), Term).
Term = [{a-[b]}]
yes

The parse/2 predicate first argument must indicate the input source (codes(Codes), stream(Stream),
line(Stream), file(Path), chars(Chars) or atom(Atom)) containing a JSON payload to be decoded into
the Prolog term in the second argument.

6.31.7 Known issues

Some tests, notably parse_simple_valid_files and roundtrip_hexadecimals, fail on backends such as
ECLiPSe and GNU Prolog that don’t support Unicode.

6.32 logging

This library provides support for logging events to files.

6.32.1 API documentation

Open the ../../docs/library_index.html#logging link in a web browser.

6.32.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(logging(loader)).

6.33 loops

This library provides implementations of several kinds of loops typical of imperative languages.

6.33.1 API documentation

Open the ../../docs/library_index.html#loops link in a web browser.

6.32. logging 495

../../docs/library_index.html#logging
../../docs/library_index.html#loops

The Logtalk Handbook, Release v3.61.0

6.33.2 Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(loops(loader)).

6.33.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(loops(tester)).

6.33.4 Usage

See e.g. the searching example.

6.34 meta

This library provides implementations of common meta-predicates. The meta object implements common
meta-predicates like map/3 and fold_left/4.

See also the meta_compiler library, which provides optimized compilation of meta-predicate calls.

6.34.1 API documentation

Open the ../../docs/library_index.html#meta link in a web browser.

6.34.2 Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(meta(loader)).

6.34.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(meta(tester)).

496 Chapter 6. Libraries

../../docs/library_index.html#meta

The Logtalk Handbook, Release v3.61.0

6.34.4 Usage

See e.g. the metapredicates example and unit tests.

6.35 meta_compiler

This library supports implementations optimized compilation of meta-calls for the predicates defined in the
meta library.

6.35.1 API documentation

Open the ../../docs/library_index.html#meta-compiler link in a web browser.

6.35.2 Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(meta_compiler(loader)).

6.35.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(meta_compiler(tester)).

6.35.4 Usage

If meta_compiler is the only hook object you are using, you can set it as the default hook object (but note
that the optimizations are only applied to entities compiled with the optimize flag turned on):

| ?- set_logtalk_flag(hook, meta_compiler).
...

Otherwise, use the hook(meta_compiler) and optimize(on) complier options when compiling and loading
the code that you want to optimize. For example:

| ?- logtalk_load(my_source_file, [hook(meta_compiler), optimize(on)]).
...

See also the metapredicates_compiled example and unit tests.

6.35. meta_compiler 497

../../docs/library_index.html#meta-compiler

The Logtalk Handbook, Release v3.61.0

6.36 nested_dictionaries

This library provides nested dictionary implementations based on private extensions to the dictionaries
library objects. The representations of a nested dictionary should be regarded as opaque terms and only
accessed using the library predicates.

This library is experimental, a work in progress, and future versions can introduce incompatible changes.

6.36.1 API documentation

Open the ../../docs/library_index.html#nested-dictionaries link in a web browser.

6.36.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(nested_dictionaries(loader)).

6.36.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(nested_dictionaries(tester)).

6.36.4 Usage

First, select the nested dictionary implementation that you want to use. For cases where the number of
elements is relatively small and performance is not critical, nbintree can be a good choice. For other cases,
navltree or nrbtree are likely better choices. If you want to compare the performance of the implementa-
tions, either define an object alias or use a uses/2 directive so that you can switch between implementations
by simply changing the alias definition or the first argument of the directive. Note that you can switch be-
tween implementations at runtime without code changes by using a parameter variable in the first argument
of a uses/2 directive.

To create an empty nested dictionary, you can use the new/1 predicate. For example:

| ?- navltree::new(Dictionary).
Dictionary = ...
yes

You can also create a new nested dictionary from a curly bracketed term representation (see below) by using
the predicate as_nested_dictionary/2. For example:

| ?- navltree::as_nested_dictionary(
{a-1, b-{c-3, d-{e-7,f-8}}},
Dictionary

).

Dictionary = ...
yes

498 Chapter 6. Libraries

../../docs/library_index.html#nested-dictionaries

The Logtalk Handbook, Release v3.61.0

Several predicates are provided to insert, lookup, update, and delete key-value pairs given a list of keys
interpreted as an access path to a nested dictionary. For example:

| ?- navltree::as_nested_dictionary(
{a-1, b-{c-3, d-{e-7,f-8}}},
Dictionary

),
navltree::lookup_in([b,d,f], Value, Dictionary).

Dictionary = ...
Value = 8
yes

For details on these and other provided predicates, consult the library API documentation.

6.36.5 Curly term representation

To simplify importing and exporting data into a nested dictionary, the library provides
as_nested_dictionary/2 and as_curly_bracketed/2 predicates that work with a curly term represen-
tation. This format is based on the JSON data interchange format.

A dictionary is represented by the {Pairs} term where Pairs is a conjunction of Key-Value or Key:Value pairs
and Value can be a nested dictionary or lists of pairs. An empty dictionary is represented using the {} term.

6.37 optionals

This library provides an implementation of optional terms with an API modeled after the Java 8 Optional
class (originally due to requests by users working in Logtalk/Java hybrid applications). An optional term is
an opaque compound term that may or may not hold a value. Optional terms avoid forcing the user to define
a representation for the absence of a value by providing an API with predicates that depend on the presence
or absence of a value. Optional terms also allow separating the code that constructs optional terms from the
code that processes them, which is then free to deal if necessary and at its convenience with any case where
the values hold by optional terms are not present.

6.37.1 API documentation

Open the ../../docs/library_index.html#optionals link in a web browser.

6.37.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(optionals(loader)).

6.37. optionals 499

../../docs/library_index.html#optionals

The Logtalk Handbook, Release v3.61.0

6.37.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(optionals(tester)).

6.37.4 Usage

The optional object provides constructors for optional terms. For example:

| ?- optional::of(1, Optional).
...

The created optional terms can then be passed as parameters to the optional/1 parametric object. For
example:

| ?- optional::of(1, Optional), optional(Optional)::or_else(Term, 0).
Optional = optional(1),
Term = 1
yes

| ?- optional::empty(Optional), optional(Optional)::or_else(Term, 0).
Optional = empty,
Term = 0
yes

The maybe object provides types and predicates for type-checking of the term hold by optional terms. It also
provides some predicates for handling lists of optional terms.

6.37.5 See also

The expecteds library.

6.38 options

This library provides useful predicates for managing developer tool and application options.

6.38.1 API documentation

Open the ../../docs/library_index.html#options file in a web browser.

500 Chapter 6. Libraries

../../docs/library_index.html#options

The Logtalk Handbook, Release v3.61.0

6.38.2 Loading

To load all entities in this library, load the loader.lgt utility file:

| ?- logtalk_load(options(loader)).

6.38.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(options(tester)).

6.38.4 Usage

The options category is usually imported by the root object of the developer tool or application. The im-
porting object should define the default_option/1 predicate and, if option type-checking is required, the
valid_option/1 predicate must be defined for each option. This library requires options to be represented
by compound terms where the functor is the option name (e.g. trim(true) or (box(0,2))). The option/2-3
can be used to get or test an option given a list of options. When an option appears multiple times in a list,
the option/2-3 predicates get or test the first (leftmost) occurrence.

The library also supports a user-defined fix_option/2 predicate. An usage example is when an option value
can be a relative file path that should be expanded before used. Another usage example would be converting
from a user-friendly option to a form more suitable for internal processing. When a call to the fix_option/2
predicate fails, the option is used as-is.

A simple example:

:- object(foo,
imports(options)).

:- uses(type, [
valid/2

]).

:- public(p/0).
p :-

% use default options
p([]).

:- public(p/1).
p(UserOptions) :-

^^check_options(UserOptions),
% construct the full set of options from
% the user options and the default options
^^merge_options(UserOptions, Options),
...
% query an option
^^option(baz(Boolean), Options),
q(Boolean),
...

(continues on next page)

6.38. options 501

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

default_option(baz(true)).
...

valid_option(baz(Boolean)) :-
valid(boolean, Boolean).

...

:- end_object.

Note that you can use protected or private import of the options category if you don’t want to add its public
predicates to the object protocol.

6.39 os

This library entities define a portable operating-system interface for the supported backend Prolog compilers.

The os_types category defines some useful operating-system types for type-checking when using with the
type library object.

6.39.1 API documentation

Open the ../../docs/library_index.html#os link in a web browser.

6.39.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(os(loader)).

6.39.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(os(tester)).

6.39.4 Known issues

Some predicates may only be supported by a subset of backend Prolog compilers on a subset of operating-
systems. They should be used with care and fully tested in your application domain as some backend Prolog
compilers have buggy and inconsistent interfaces, specially across operating-systems. See the remarks section
in the os object documentation for details.

502 Chapter 6. Libraries

../../docs/library_index.html#os

The Logtalk Handbook, Release v3.61.0

6.40 queues

This library implements queues. The queue representation should be regarded as an opaque term and only
accessed using the library predicates.

6.40.1 API documentation

Open the ../../docs/library_index.html#queues link in a web browser.

6.40.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(queues(loader)).

6.40.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(queues(tester)).

6.40.4 Usage

To create a new queue, use the new/1 predicate:

| ?- queue::new(Queue).
Queue = ...
yes

Elements can be added to either the end of the queue or the front of the queue using, respectively, the join/3
and join_all/3 predicates or the jump/3 and jump_all/3. For example:

| ?- queue::(new(Queue0), join_all([1,2,3], Queue0, Queue1)).
Queue0 = ...,
Queue1 = ...
yes

We can query the head of the queue or remove the head of the queue using, respectively, the head/2 and
serve/3 predicates. For example:

| ?- queue::(new(Queue0), join(1, Queue0, Queue1), head(Queue1, Head)).
Queue0 = ...,
Queue1 = ...,
Head = 1
yes

For details on these and other provided predicates, consult the library API documentation.

6.40. queues 503

../../docs/library_index.html#queues

The Logtalk Handbook, Release v3.61.0

6.41 random

This library provides portable random number generators and an abstraction over native backend Prolog
compiler random number generator if available.

6.41.1 API documentation

Open the ../../docs/library_index.html#random link in a web browser.

6.41.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(random(loader)).

6.41.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(random(tester)).

6.41.4 Usage

The random object implements portable random number generator and supports multiple random number
generators, using different seeds, by defining derived objects. For example:

:- object(my_random_generator_1,
extends(random)).

:- initialization(::reset_seed).

:- end_object.

The fast_random object also implements a portable random number generator but does not support deriving
multiple random number generators, which makes it a bit faster than the random object.

The random and fast_random objects manage the random number generator seed using internal dynamic
state. The predicates that update the seed are declared as synchronized (when running on Prolog backends
that support threads). Still, care must be taken when using these objects from multi-threaded applications
as there is not portable solution to protect seed updates from signals and prevent inconsistent state when
threads are canceled.

The random and fast_random objects always initialize the random generator seed to the same value, thus
providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed
with a random value.

The backend_random object abstracts the native backend Prolog compiler random number generator for
the basic random/1, get_seed/1, and set_seed/1 predicates providing a portable implementation for the
remaining predicates. This makes the object stateless, which can allow reliable use from multiple threads.
Consult the backend Prolog compiler documentation for details on its random number generator properties.
Note that several of the supported backend Prolog systems, notably B-Prolog, CxProlog, ECLiPSe, JIProlog,

504 Chapter 6. Libraries

../../docs/library_index.html#random

The Logtalk Handbook, Release v3.61.0

Lean Prolog, Qu-Prolog, and Quintus Prolog, do not provide implementations for both the get_seed/1 and
set_seed/1 predicates and calling these predicates simply succeed without performing any action.

6.42 reader

The reader object provides portable predicates for reading text file and text stream contents to lists of terms,
characters, or character codes and for reading binary files to lists of bytes. The text file API is loosely based
on the SWI-Prolog readutil module.

6.42.1 API documentation

Open the ../../docs/library_index.html#reader link in a web browser.

6.42.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(reader(loader)).

6.42.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(reader(tester)).

6.43 redis

Redis client library. Supports GNU Prolog, LVM, Qu-Prolog, SICStus Prolog, SWI-Prolog, and XSB. Support
for Ciao Prolog and ECLiPSe is also included but requires fixes for issues in these systems.

For general information on Redis, including a list of the available commands, visit:

https://redis.io

6.43.1 API documentation

Open the ../../docs/library_index.html#redis link in a web browser.

6.42. reader 505

../../docs/library_index.html#reader
../../docs/library_index.html#redis

The Logtalk Handbook, Release v3.61.0

6.43.2 Loading

To load this library, load the loader.lgt file:

| ?- logtalk_load(redis(loader)).

6.43.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(redis(tester)).

The tests assume a localhost Redis server running on the default port (6379) if the REDIS_HOST and
REDIS_PORT environment variables are not defined. If the server is not detected, the tests are skipped.

The unit tests were originally written by Sean Charles for his GNU Prolog Redis client library:

https://github.com/emacstheviking/gnuprolog-redisclient

The Logtalk version is a straight-forward port of the original tests using the test/1 dialect of lgtunit.

6.43.4 Credits

This library is inspired by the Sean Charles GNU Prolog Redis client library.

6.43.5 Known issues

Recent version of macOS seem to disable the mapping of localhost to 127.0.0.1. This issue may prevent
running this library unit tests and the redis::connect/1 from working. This can be fixed either by editing
the /etc/hosts file or by using in alternative the predicateredis::connect/3with’127.0.0.1’` as first
argument.

6.44 sets

This library provides a set protocol and two implementations of this protocol using ordered lists, one of them
a parametric object that takes the type of the set elements as a parameter. Although representing sets as
ordered lists is a common representation, is best practice to regard sets as opaque terms and only access
them using the library predicates.

6.44.1 API documentation

Open the ../../docs/library_index.html#sets link in a web browser.

506 Chapter 6. Libraries

../../docs/library_index.html#sets

The Logtalk Handbook, Release v3.61.0

6.44.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(sets(loader)).

6.44.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(sets(tester)).

6.44.4 Usage

First, select a set implementation. Use the set(Type) object if you want to type-check the set elements.
Otherwise, use the set object.

To create a new set, you can use the new/1 predicate. For example:

| ?- set::new(Set).
Set = []
yes

You can also create a new set with all unique elements from a list of terms by using the as_set/2 predicate.
For example:

| ?- set::as_set([1,3,2,1,2], Set).
Set = [1, 2, 3]
yes

Predicates are provided for the most common set operations. For example:

| ?- set::(
as_set([1,3,2,1,2], Set1),
as_set([7,4,2,5,1], Set2),
intersection(Set1, Set2, Intersection),
symdiff(Set1, Set2, Difference)

).
Set1 = [1, 2, 3],
Set2 = [1, 2, 4, 5, 7],
Intersection = [1, 2],
Difference = [3, 4, 5, 7]
yes

When working with a custom type of set elements, the corresponding object must implement the comparingp
protocol. For example:

:- object(rainbow_colors,
implements(comparingp)).

order(red, 1).
order(orange, 2).

(continues on next page)

6.44. sets 507

The Logtalk Handbook, Release v3.61.0

(continued from previous page)

order(yellow, 3).
order(green, 4).
order(blue, 5).
order(indigo, 6).
order(violet, 7).

Color1 < Color2 :-
order(Color1, N1),
order(Color2, N2),
{N1 < N2}.

Color1 =< Color2 :-
order(Color1, N1),
order(Color2, N2),
{N1 =< N2}.

...

:- end_protocol.

We can then use this object with the set/1 parametric object. For example:

| ?- set(rainbow_colors)::as_set([blue, yellow, violet], Set).
Set = [yellow, blue, violet]
yes

For details on these and other provided predicates, consult the library API documentation.

6.44.5 Credits

Some predicates adapted from code authored by Richard O’Keefe.

6.45 statistics

The entities in this group define some useful predicates for descriptive statistics. Data is represented as a
list of numbers (integers or floats). Use the object sample of your data represents a sample. Use the object
population if your data represents a population.

6.45.1 API documentation

Open the ../../docs/library_index.html#statistics link in a web browser.

508 Chapter 6. Libraries

../../docs/library_index.html#statistics

The Logtalk Handbook, Release v3.61.0

6.45.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(statistics(loader)).

6.45.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(statistics(tester)).

6.46 term_io

This library implements predicates for reading/writing terms from/to atoms, chars (lists of characters), and
codes (lists of character codes). These predicates are implemented using a single temporary file created
when the library is loaded. This temporary file is unique per Logtalk process. The predicates can be safely
used in multi-threaded applications.

6.46.1 API documentation

Open the ../../docs/library_index.html#term-io link in a web browser.

6.46.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(term_io(loader)).

6.46.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(term_io(tester)).

6.47 timeout

The timeout object provides a portable abstraction over calling a goal deterministically with a time limit as
made available in some form by some of the supported backend Prolog systems (B-Prolog, ECLiPSe, LVM,
SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, and YAP).

For better performance, compile calls to this library meta-predicates with the optimize flag turned on so that
the meta-arguments, i.e. the goals that you are timing, are also compiled.

6.46. term_io 509

../../docs/library_index.html#term-io

The Logtalk Handbook, Release v3.61.0

6.47.1 API documentation

Open the ../../docs/library_index.html#timeout link in a web browser.

6.47.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(timeout(loader)).

6.47.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(timeout(tester)).

6.48 types

This library implements predicates over standard Prolog term types and also term representing common data
structures such as lists and pairs.

It also includes a user-extensible type object defining type checking predicates over common Logtalk and
Prolog term types. The types define a hierarchy with the Prolog type term at the root (i.e. type-checking
a predicate argument of type term trivially succeeds). Some types are only meaningful for backend Prolog
systems supporting non-universal features (e.g. cyclic or char(CharSet) with a Unicode character set). See
the API documentation for a full list of the types defined by default.

6.48.1 API documentation

Open the ../../docs/library_index.html#types link in a web browser.

6.48.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(types(loader)).

In case your code only requires the most basic types, you can load in alternative the file:

| ?- logtalk_load(basic_types(loader)).

See the notes on the basic_types virtual library for details.

510 Chapter 6. Libraries

../../docs/library_index.html#timeout
../../docs/library_index.html#types

The Logtalk Handbook, Release v3.61.0

6.48.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(types(tester)).

6.48.4 Type-checking

This library type object can be used to type-check common Logtalk and Prolog term types. The valid/2
predicate succeeds or fails if a term is of a given type. For example:

| ?- type::valid(positive_integer, 42).
yes

| ?- type::valid(positive_integer, -13).
no

The check/2 and check/3 predicates throw an exception if a term is not of a given type. For example:

| ?- catch(type::check(integer, abc), Error, true).
Error = type_error(integer, abc)
yes

If we require a standard error/2 exception term, the check/3 predicate takes a context argument. For
example:

| ?- catch(type::check(integer, abc, foo/3), Error, true).
Error = error(type_error(integer, abc), foo/3)
yes

Typically, the context is provided by calling the built-in context/1 method.

6.48.5 Defining new types

To define a custom type, define clauses for both the type::type/1 and type::check/2 multifile predicates.
For example:

:- multifile(type::type/1).
type::type(age).

:- multifile(type::check/2).
type::check(age, Term) :-

type::check(between(non_negative_integer, 0, 150), Term).

Be careful to ensure that new type definitions don’t introduce spurious choice-points for these predicates.
The unit tests of the types library perform this check for ground types.

When defining a meta-type (i.e. a type with arguments that are also types), add also a clause for the
type::meta_type/3 multifile predicate. For example:

:- multifile(type::meta_type/3).
type::meta_type(tuple(Type1, Type2, Type3), [Type1, Type2, Type3], []).

6.48. types 511

The Logtalk Handbook, Release v3.61.0

This predicate is called when checking if a type is a defined type. For meta-types, that check must extend to
the sub-types.

6.48.6 Examples

See e.g. the os library implementation of custom types for files and directories. Or the expecteds and
optionals libraries custom types. See also the my_types programming example.

6.49 unicode_data

VivoMind Prolog Unicode Resources

6.49.1 Authors

Arun Majumdar @ VivoMind LLC
Paulo Moura @ VivoMind LLC

6.49.2 License

Creative Commons CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication:

http://creativecommons.org/publicdomain/zero/1.0/

We do appreciate acknowledgement if you use these resources, however, and we also welcome contributions
to improve them.

6.49.3 Website

The latest release of the VivoMind Prolog Unicode Resources is available at the URL:

https://github.com/VivoMind

At this address you can also find additional information about the VivoMind Prolog Unicode Resources and
submit your bug reports and contributions.

6.49.4 Description

The VivoMind Prolog Unicode Resources are a set of files resulting from the conversion of most (but not
all) official UCD 6.1 files and updated for the few changes in the 6.2 standard. The original files can be
downloaded from:

http://www.unicode.org

The conversion of the UCD files resulted in a large number of Prolog tables and also a set of auxiliary
predicates (described below) for accessing these tables. Other than the obvious conversion in the provided
predicate names, no attempt was made to convert the identifiers used for properties and other data.

512 Chapter 6. Libraries

http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/VivoMind
http://www.unicode.org

The Logtalk Handbook, Release v3.61.0

6.49.5 Requirements

Most of the auxiliary predicates assume that the de facto Prolog standard predicate between/3 is available.
Unicode code point values are represented using the ISO Prolog standard notation for hexadecimal integers.
In addition, the ISO Prolog standard directives include/1 and ensure_loaded/1 are used in some of the files
to load auxiliary files.

6.49.6 Usage

Most applications only require some of the tables present in these resources. Most of these tables define
properties for ranges of code points and not for single code points but the provided auxiliary predicates
allow access for a single code point. When increased performance is required, consider using the existing
tables and auxiliary predicates to generated derived tables more fit for your specific application.

6.49.7 Known issues

In the file unicode_unihan_variant.pl, when there’s more than one variant for a code point, only the first
one (as listed in the original UCD file) is returned.

The include/1 and ensure_loaded/1 directives are specified in the ISO Prolog standard published in 1995.
But some Prolog compilers either don’t implement one or both directives or have flawed implementations.
Thus, you may need to change how some of the files are loaded depending on the chosen Prolog compiler.
Using conditional compilation directives would help in some cases but it would also rise portability issues on
their own.

6.49.8 Acknowledgements

We thank Richard O’Keefe for helpful suggestions to improve the usability of these resources.

6.49.9 Files and API Summary

The Prolog file names are derived from the original file names by prefixing them with the unicode_ string,
converting to lower case, and replacing the camel case spelling with underscores. There are, however, two
exceptions: the files and directories holding the code point categories and names.

There’s also an utility file, unicode_data.pl, that can be used to load all the files in these resources. Is mostly
used to test portability of the code across Prolog compilers. Also included is a Logtalk version of this file,
unicode_data.lgt, that uses Logtalk’s own implementation of the include/1 directive and the logtak_load/
1 predicate to load all files. This file can be used to workaround Prolog systems with buggy or missing
implementations of the ensure_loaded/1 and include/1 directives.

An overview of the original file names and the code point properties can be found at:

http://www.unicode.org/reports/tr44/#Directory_Structure
http://www.unicode.org/reports/tr44/#Property_Definitions

6.49. unicode_data 513

http://www.unicode.org/reports/tr44/#Directory_Structure
http://www.unicode.org/reports/tr44/#Property_Definitions

The Logtalk Handbook, Release v3.61.0

unicode_arabic_shaping.pl

• Provides: unicode_arabic_shaping/4

• Dependencies: (none)

unicode_bidi_mirroring.pl

• Provides: unicode_bidi_mirroring/2

• Dependencies: (none)

unicode_blocks.pl

• Provides: unicode_block/2-3

• Dependencies: (none)

unicode_case_folding.pl

• Provides: unicode_case_folding/3

• Dependencies: (none)

unicode_categories.pl

• Provides: unicode_category/2

• Dependencies: files in the unicode_categories directory

unicode_cjk_radicals.pl

• Provides: unicode_cjk_radical/3

• Dependencies: (none)

unicode_composition_exclusions.pl

• Provides: unicode_composition_exclusion/1

• Dependencies: (none)

unicode_core_properties.pl

• Provides: unicode_math/1-2 unicode_alphabetic/1-2 unicode_range_alphabetic/2
unicode_lowercase/1-2 unicode_uppercase/1-2 unicode_cased/1-2 unicode_case_ignorable/
1-2 unicode_changes_when_lowercased/1-2 unicode_changes_when_uppercased/
1-2 unicode_changes_when_titlecased/1-2 unicode_changes_when_casefolded/1-2
unicode_changes_when_casemapped/1-2 unicode_id_start/1-2 unicode_id_continue/
1-2 unicode_xid_start/1-2 unicode_xid_continue/1-2 unicode_default_ignorable/1-2
unicode_grapheme_extend/1-2 unicode_grapheme_base/1-2 unicode_grapheme_link/1-2

• Dependencies: files in the unicode_core_properties directory

514 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

unicode_decomposition_type.pl

• Provides: unicode_canonical/1-2 unicode_compat/1-2 unicode_font/1-2 unicode_nobreak/
1-2 unicode_initial/1-2 unicode_medial/1-2 unicode_final/1-2 unicode_isolated/1-2
unicode_circle/1-2 unicode_super/1-2 unicode_sub/1-2 unicode_vertical/1-2 unicode_wide/
1-2 unicode_narrow/1-2 unicode_small/1-2 unicode_square/1-2 unicode_fraction/1-2

• Dependencies: files in the unicode_decomposition_type directory

unicode_derived_age.pl

• Provides: unicode_age/2-3

• Dependencies: (none)

unicode_derived_bidi_class.pl

• Provides: unicode_bidi_class/2-3

• Dependencies: (none)

unicode_derived_combining_class.pl

• Provides: unicode_combining_class/2-3

• Dependencies: (none)

unicode_derived_core_properties.pl

• Provides: unicode_core_property/2-3

• Dependencies: (none)

unicode_derived_decomposition_type.pl

• Provides: unicode_decomposition_type/2-3

• Dependencies: (none)

unicode_derived_east_asian_width.pl

• Provides: unicode_east_asian_width/2-3

• Dependencies: (none)

6.49. unicode_data 515

The Logtalk Handbook, Release v3.61.0

unicode_derived_joining_group.pl

• Provides: unicode_joining_group/2-3

• Dependencies: (none)

unicode_derived_joining_type.pl

• Provides: unicode_joining_type/2-3

• Dependencies: (none)

unicode_derived_line_break.pl

• Provides: unicode_line_break/2-3

• Dependencies: (none)

unicode_derived_normalization_props.pl

• Provides: unicode_fc_nfkc/2 unicode_nfkc_cf/2 unicode_full_composition_exclusion/1-2
unicode_nfd_qc_no/1-2 unicode_nfc_qc_no/1-2 unicode_nfc_qc_maybe/1-2 unicode_nfkd_qc_no/
1-2 unicode_nfkc_qc_no/1-2 unicode_nfkc_qc_maybe/1-2 unicode_expands_on_nfd/1-2
unicode_expands_on_nfc/1-2 unicode_expands_on_nfkd/1-2 unicode_expands_on_nfkc/1-2
unicode_changes_when_nfkc_casefolded/1-2

• Dependencies: files in the unicode_derived_normalization_props directory

unicode_derived_numeric_type.pl

• Provides: unicode_numeric_type/2-3

• Dependencies: (none)

unicode_derived_numeric_values.pl

• Provides: unicode_numerical_value/3

• Dependencies: (none)

unicode_hangul_syllable_type.pl

• Provides: unicode_hangul_syllable_type/2-3

• Dependencies: (none)

516 Chapter 6. Libraries

The Logtalk Handbook, Release v3.61.0

unicode_indic_matra_category.pl

• Provides: unicode_indic_matra_category/2-3

• Dependencies: (none)

unicode_indic_syllabic_category.pl

• Provides: unicode_indic_syllabic_category/2-3

• Dependencies: (none)

unicode_jamo.pl

• Provides: unicode_jamo/2

• Dependencies: (none)

unicode_name_aliases.pl

• Provides: unicode_name_alias/3

• Dependencies: (none)

unicode_names.pl

• Provides: unicode_name/2

• Dependencies: files in the unicode_names directory

unicode_prop_list.pl

• Provides: unicode_white_space/1-2 unicode_bidi_control/1-2 unicode_join_control/
1-2 unicode_dash/1-2 unicode_hyphen/1-2 unicode_quotation_mark/1-2
unicode_terminal_punctuation/1-2 unicode_other_math/1-2 unicode_hex_digit/1-2
unicode_ascii_hex_digit/1-2 unicode_other_alphabetic/1-2 unicode_ideographic/
1-2 unicode_diacritic/1-2 unicode_extender/1-2 unicode_other_lowercase/
1-2 unicode_other_uppercase/1-2 unicode_noncharacter_code_point/
1-2 unicode_other_grapheme_extend/1-2 unicode_ids_binary_operator/1-2
unicode_ids_trinary_operator/1-2 unicode_radical/1-2 unicode_unified_ideograph/1-2
unicode_other_default_ignorable/1-2 unicode_deprecated/1-2 unicode_soft_dotted/1-2
unicode_logical_order_exception/1-2 unicode_other_id_start/1-2 unicode_other_id_continue/
1-2 unicode_sterm/1-2 unicode_variation_selector/1-2 unicode_pattern_white_space/1-2
unicode_pattern_syntax/1-2

• Dependencies: files in the unicode_prop_list directory

6.49. unicode_data 517

The Logtalk Handbook, Release v3.61.0

unicode_range_scripts.pl

• Provides: unicode_range_script/3 unicode_script/2

• Dependencies: (none)

unicode_script_extensions.pl

• Provides: unicode_script_extension/2-3

• Dependencies: unicode_scripts.pl

unicode_scripts.pl

• Provides: unicode_script/6 unicode_script_category/3

• Dependencies: (none)

unicode_special_casing.pl

• Provides: unicode_special_casing/5

• Dependencies: (none)

unicode_unihan_variants.pl

• Provides: unicode_unihan_variant/2-3

• Dependencies: (none)

unicode_version.pl

• Provides: unicode_version/3

• Dependencies: (none)

6.50 union_find

This library implements a union-find data structure. This structure tracks a set of elements partitioned
into a number of disjoint (non-overlapping) subsets. It provides fast operations to add new sets, to merge
existing sets, and to determine whether elements are in the same set. This implementation of the union-find
algorithm provides the following features:

• Path compression: Path compression flattens the structure of the tree by making every node point to
the root whenever a find predicate is used on it.

• Union by rank: Union predicates always attach the shorter tree to the root of the taller tree. Thus,
the resulting tree is no taller than the originals unless they were of equal height, in which case the
resulting tree is taller by one node.

For a general and extended discussion on this data structure, see e.g.

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

518 Chapter 6. Libraries

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

The Logtalk Handbook, Release v3.61.0

6.50.1 API documentation

Open the ../../docs/library_index.html#union-find link in a web browser.

6.50.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(union_find(loader)).

6.50.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(union_find(tester)).

6.50.4 Usage

An usage example is Kruskal’s algorithm, a minimum-spanning-tree algorithm which finds an edge of the
least possible weight that connects any two trees in the forest. It is a greedy algorithm in graph theory as it
finds a minimum spanning tree for a connected weighted graph adding increasing cost arcs at each step.

:- object(kruskal).

:- public(kruskal/2).

:- uses(union_find, [
new/2, find/4, union/4

]).

kruskal(g(Vertices-Edges), g(Vertices-Tree)) :-
new(Vertices, UnionFind),
keysort(Edges, Sorted),
kruskal(UnionFind, Sorted, Tree).

kruskal(_, [], []).
kruskal(UnionFind0, [Edge| Edges], [Edge| Tree]) :-

Edge = _-(Vertex1, Vertex2),
find(UnionFind0, Vertex1, Root1, UnionFind1),
find(UnionFind1, Vertex2, Root2, UnionFind2),
Root1 \== Root2,
!,
union(UnionFind2, Vertex1, Vertex2, UnionFind3),
kruskal(UnionFind3, Edges, Tree).

kruskal(UnionFind, [_| Edges], Tree) :-
kruskal(UnionFind, Edges, Tree).

:- end_object.

Sample query:

6.50. union_find 519

../../docs/library_index.html#union-find

The Logtalk Handbook, Release v3.61.0

| ?- kruskal::kruskal(g([a,b,c,d,e,f,g]-[7-(a,b), 5-(a,d), 8-(b,c), 7-(b,e), 9-(b,d), 5-(c,
→˓e), 15-(d,e), 6-(d,f), 8-(e,f), 9-(e,g), 11-(f,g)]), Tree).

Tree = g([a,b,c,d,e,f,g]-[5-(a,d),5-(c,e),6-(d,f),7-(a,b),7-(b,e),9-(e,g)])
yes

6.51 uuid

This library implements a Universally unique identifier (UUID) generator. Currently only version 1 and
version 4 UUIDs are supported. For reference material, see e.g.

https://en.wikipedia.org/wiki/Universally_unique_identifier

Some backends provide time stamps with low granularity (e.g. seconds but not milliseconds or nanosec-
onds). To compensate, the generation of version 1 UUIDs uses 14 random bits for the clock sequence.

The generation of version 4 UUIDs uses the /dev/urandom random number generator when available. This in-
cludes macOS, Linux, *BSD, and other POSIX operating-systems. On Windows, a pseudo-random generator
is used but randomized using the current wall time.

UUIDs can be generated as atoms, lists of characters, or lists of character codes.

See also the ids library.

6.51.1 API documentation

Open the ../../docs/library_index.html#uuid link in a web browser.

6.51.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(uuid(loader)).

6.51.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(uuid(tester)).

6.51.4 Generating version 1 UUIDs

By default, version 1 UUIDs are generated as atoms. For example:

| ?- uuid::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = '00a66fc0-82cf-11eb-bc83-f2d19094dc4b'
yes

To generate a UUID using a list of characters representation, use instead the uuid/1 parametric object:

520 Chapter 6. Libraries

https://en.wikipedia.org/wiki/Universally_unique_identifier
../../docs/library_index.html#uuid

The Logtalk Handbook, Release v3.61.0

| ?- uuid(chars)::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = ['0','0',d,e,'9','0',c,'0',-,'8','2',c,f,-,'1','1',e,b,-,

a,'9','8','5',-,f,'2',d,'1','9','0','9','4',d,c,'4',b]
yes

Similar to get a UUID using a list of character codes representation:

| ?- uuid(codes)::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = [48,48,52,99,99,54,99,48,45,56,50,99,102,45,49,49,101,98,45,

98,57,102,52,45,102,50,100,49,57,48,57,52,100,99,52,98]
yes

6.51.5 Generating version 4 UUIDs

By default, version 4 UUIDs are generated as atoms. For example:

| ?- uuid::uuid_v4(UUID).
UUID = '1c652782-69c5-4252-88c8-09e576a44db5'
yes

To generate a UUID using a list of characters representation, use instead the uuid/1 parametric object:

| ?- uuid(chars)::uuid_v4(UUID).
UUID = [d,'3',d,'3','3','5','1','3',-,'8','1',e,c,-,'4',d,'2','6',-,

'9',f,'2','2',-,e,d,'9','5',e,'0','0',e,'1','5','7','0']
yes

Similar to get a UUID using a list of character codes representation:

| ?- uuid(codes)::uuid_v4(UUID).
UUID = [102,97,52,54,57,98,100,50,45,51,57,54,51,45,52,97,100,55,45,

98,50,50,55,45,101,100,52,99,56,55,99,54,53,55,102,98]
yes

6.51.6 Generating the null UUID

A predicate is also provided that returns the null UUID:

| ?- uuid::uuid_null(UUID).
UUID = '00000000-0000-0000-0000-000000000000'
yes

6.51. uuid 521

The Logtalk Handbook, Release v3.61.0

6.52 zippers

This library implements zippers over lists.

6.52.1 API documentation

Open the ../../docs/library_index.html#zippers link in a web browser.

6.52.2 Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(zippers(loader)).

6.52.3 Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(zippers(tester)).

522 Chapter 6. Libraries

../../docs/library_index.html#zippers

CHAPTER

SEVEN

GLOSSARY

abstract class
A class that cannot be instantiated by sending it a message. Usually used to contain common predicates
that are inherited by other classes.

abstract method
A method implementing an algorithm whose step corresponds to calls to methods defined in the de-
scendants of the object (or category) containing it.

adapter file
A Prolog source file defining a minimal abstraction layer between the Logtalk compiler/runtime and a
specific backend Prolog compiler.

ancestor
A class or a parent prototype that contributes (via inheritance) to the definition of an object. For class-
based hierarchies, the ancestors of an instance are its class(es) and all the superclasses of its class(es).
For prototype-based hierarchies, the ancestors of a prototype are its parent(s) and the ancestors of its
parent(s).

backend Prolog compiler
The Prolog compiler that is used to host and run Logtalk and that is called for compiling the interme-
diate Prolog code generated by the Logtalk compiler when compiling source files.

built-in method
A predefined method that can be called from within any object or category. I.e. built-in methods are
built-in object and category predicates. Built-in methods cannot be redefined.

built-in predicate
A predefined predicate that can be called from anywhere. Built-in predicates can be redefined within
objects and categories.

category
A set of predicates directives and clauses that can be (virtually) imported by any object. Categories
support composing objects using fine-grained units of code reuse and also hot patching of existing
objects. A category should be functionally-cohesive, defining a single functionality.

class
An object that specializes another object, interpreted as its superclass. A class define the common
predicates of a set of objects that instantiates it. An object can also be interpreted as a class when it
instantiates itself.

closed-world assumption
The assumption that what cannot be proved true is false. Therefore, sending a message corresponding
to a declared but not defined predicate, or calling a declared predicate with no clauses, fails. But
messages or calls to undeclared predicates generate an error.

523

The Logtalk Handbook, Release v3.61.0

closure
A callable term (i.e. an atom or a compound term) passed to a meta-predicate call where it is extended
with additional arguments to form a goal called by the meta-predicate.

coinductive predicate
A predicate whose calls are proved using greatest fixed point semantics. Coinductive predicates allows
reasoning about infinite rational entities such as cyclic terms and 𝜔-automata.

complementing category
A category used for hot patching an existing object (or a set of objects).

component
A unique atom or compound term template identifying a library, tool, application, or application sub-
system. Component names are notably used by the message printing and question asking mechanisms.
Compound terms are used instead of atoms when parameterization is required.

directive
A source file term that affects the interpretation of source code. Directives use the (:-)/1 prefix
operator as functor.

discontiguous predicate
A predicate whose clauses are not contiguous in a source file. I.e. a predicate whose clauses are mixed
with clauses for other predicates.

doclet file
A source file whose main purpose is to generate documentation for e.g. a library or an application.

doclet object
An object specifying the steps necessary to (re)generate the API documentation for a project. See the
doclet and lgtdoc tools for details.

dynamic binding
Runtime lookup of a predicate declaration and predicate definition to verify the validity of a message (or
a super call) and find the predicate definition that will be used to answer the message (or the super
call). Also known as late binding. See also static binding.

dynamic entity
See entity.

dynamic predicate
A predicate whose clauses can be dynamically added or retracted at runtime.

early binding
See static binding.

encapsulation
The hiding of an object implementation. This promotes software reuse by isolating the object clients
from its implementation details. Encapsulation is enforced in Logtalk by using predicate scope directives.

entity
Generic name for Logtalk compilation units: objects, categories, and protocols. Entities share a single
namespace (i.e. entity identifiers must be unique) and can be static (the default) or dynamic. Static
entities are defined in source files. Dynamic entities can also be defined in source files but are usually
created and abolished at runtime using the language built-in predicates.

entity directive
A directive that affects how Logtalk entities are used or compiled.

event
The sending of a message to an object. An event can be expressed as an ordered tuple: (Event, Object,

524 Chapter 7. Glossary

https://github.com/LogtalkDotOrg/logtalk3/tree/master/tools/doclet/NOTES.md
https://github.com/LogtalkDotOrg/logtalk3/tree/master/tools/lgtdoc/NOTES.md

The Logtalk Handbook, Release v3.61.0

Message, Sender). Logtalk distinguish between the sending of a message — before event — and the
return of control to the sender — after event.

expansion workflow
A sequence of term-expansion or goal-expansion steps where each step is usually defined using a hook
object or a combination of hook objects.

grammar rule
An alternative notation for predicates used to parse or generate sentences on some language. This
notation hides the arguments used to pass the sequences of tokens being processed, thus simplifying
the representation of grammars. Grammar rules are represented using as functor the infix operator
(-->)/2 instead of the (:-)/2 operator used with predicate clauses.

grammar rule non-terminal
A syntactic category of words or phrases. A non-terminal is identified by its non-terminal indicator, i.e.
by its name and number of arguments using the notation Name//Arity.

grammar rule terminal
A word or basic symbol of a language.

hook object
An object, implementing the expanding built-in protocol, defining term- and goal-expansion predicates,
used in the compilation of Logtalk or Prolog source files. A hook object can be specified using the hook
flag. It can also be specified using a set_logtalk_flag/2 directive in the source files to be expanded.

hook predicate
A predicate, usually declared multifile, that allows the user to customize another predicate or provide
alternative definitions for a default predicate definition.

hot patching
The act of fixing entity directives and predicates or adding new entity directives and predicates to loaded
entities in a running application without requiring access to the entities source code or restarting the
application. Achieved using complementing categories.

identity
Property of an entity that distinguishes it from every other entity. The identifier of an entity is its
functor (i.e. its name and arity), which must be unique. Object and category identifiers can be atoms
or compound terms. Protocol identities must be atoms. All Logtalk entities (objects, protocols, and
categories) share the same namespace.

inheritance
An entity inherits predicates directives and clauses from related entities. In the particular case of objects,
when an object extends other object, we have prototype-based inheritance. When an object specializes
or instantiates another object, we have class-based inheritance. See also public inheritance, protected
inheritance, and private inheritance.

instance
An object that instantiates one another object, interpreted as its class. An object may instantiate multiple
objects (also known as multiple instantiation).

instantiation
The process of creating a new class instance. In Logtalk, this does not necessarily imply dynamic
creation of an object at runtime; an instance may also be defined as a static object in a source file.

interface
See protocol.

lambda expression
A compound term that can be used in place of a goal or closure meta-argument and that abstracts a

525

../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.61.0

predicate definition by listing its variables and a callable term that implements the definition. Lambda
expressions help avoiding the need of naming and defining auxiliary predicates.

lambda free variable
A variable that is global to a lambda expression. All used global variables must be explicitly listed in a
lambda expression for well-defined semantics.

lambda parameter
A term (usually a variable or a non-ground compound term) that is local to a lambda expression. All
lambda parameters must be explicitly enumerated in a lambda expression for well-defined semantics.

late binding
See dynamic binding.

library
A directory containing source files. See also library alias and library notation.

library alias
An atom that can be used as an alias for a library full path. Library aliases and their corresponding
paths can be defined using the logtalk_library_path/2 predicate. See also library notation.

library notation
A compound term where the name is a library alias and the single argument is a source file relative
path. Use of library notation simplifies compiling and loading source files and can make an application
easily relocatable by defining an alias for the root directory of the application files.

loader file
A source file whose main purpose is to load a set of source files (possibly with specific compiler flags)
and any library dependencies.

local predicate
A predicate that is defined in an object (or in a category) but that is not listed in a scope directive. These
predicates behave like private predicates but are invisible to the reflection built-in methods. Local
predicates are usually auxiliary predicates and only relevant to the entity where they are defined.

message
A query sent to an object. In logical terms, a message can be seen as a request for proof construction
using an object database and the databases of related entities.

message lookup
Sending a message to an object requires a lookup for the predicate declaration, to check if the message
is within the scope of the sender, and a lookup for the predicate definition that is going to be called to
answer the message. Message lookup can occur at compile time or at runtime.

message to self
A message sent to the object that received the original message under processing. Messages to self
require dynamic binding as the value of self is only know at runtime.

meta-argument
A predicate argument that is called as a goal, used as a closure to construct a goal that will be called,
or that is handled in a way that requires awareness of the predicate calling context.

meta-interpreter
A program capable of running other programs written in the same language.

meta-predicate
A predicate with one or more meta-arguments. For example, call/1-N and findall/3 are built-in meta-
predicates.

meta-variable
A variable in a meta-argument position that is expected to be unified with a goal or a closure at runtime.

526 Chapter 7. Glossary

The Logtalk Handbook, Release v3.61.0

metaclass
The class of a class, when interpreted as an instance. Metaclass instances are themselves classes.
Metaclasses are optional, except for the root class, and can be shared by several classes.

method
The predicate definition used to answer a message sent to an object. Logtalk supports both static binding
and dynamic binding to find which method to run to answer a message.

module
A Prolog entity characterized by an identity and a set of predicates directives and clauses. Prolog
modules are usually static although some Prolog systems allow the creation of dynamic modules at
runtime. Prolog modules can be seen as prototypes.

monitor
Any object, implementing the monitoring built-in protocol, that is notified by the runtime when a spied
event occurs. The spied events can be set by the monitor itself or by any other object.

multifile predicate
A predicate whose clauses can be defined in multiple entities and source files. The object or category
holding the directive without an entity prefix qualifying the predicate holds the multifile predicate
primary declaration, which consists of both a scope directive and a multifile/1 directive for the predicate.

naked meta-variable
A meta-variable used as the body of a predicate clause or grammar rule or used in a cut-transparent
argument of a control construct. The “naked” designation highlights that the meta-variable is not
wrapped by call/1 or phrase//1 goals.

object
An entity characterized by an identity and a set of predicates directives and clauses. Logtalk objects can
be either static or dynamic. Logtalk objects can play the role of classes, instances, or prototypes. The
role or roles an object plays are a function of its relations with other objects.

object database
The set of predicates locally defined inside an object.

parameter
An argument of a parametric object or a parametric category identifier. Parameters are logical variables
implicitly shared by all the entity predicate clauses.

parameter variable
A variable used as parameter in a parametric object or a parametric category using the syntax
ParameterName. Parameter variables are logical variables shared by all entity terms. Occurrences
of parameter variables in entity directives and clauses are implicitly unified with the corresponding
entity parameters.

parametric category
See parametric entity.

parametric entity
An object or category whose identifier is a compound term possibly containing free variables that can
be used to parameterize the entity predicates. Parameters are logical variables implicitly shared by
all the entity clauses. Note that the identifier of a parametric entity is its functor, irrespective of the
possible values of its arguments (e.g. foo(bar) and foo(baz) are different parameterizations of the
same parametric entity, foo/1).

parametric object
See parametric entity.

parametric object proxy
A compound term (usually represented as a plain Prolog fact) with the same name and number of

527

../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.61.0

arguments as the identifier of a parametric object.

parent
A prototype that is extended by another prototype.

polymorphism
Different objects (and categories) can provide different implementations of the same predicate. The
predicate declaration can be inherited from a common ancestor, also known as subtype polymorphism.
Logtalk implements single dispatch on the receiver of a message, which can be described as single-
argument polymorphism. As message lookup only uses the predicate functor, multiple predicate imple-
mentations for different types of arguments are possible, also known as ad hoc polymorphism. Para-
metric objects and categories enable implementation of parametric polymorphism by using one of more
parameters to pass object identifiers that can be used to parameterize generic predicate definitions.

predicate
Predicates describe what is true about the application domain. A predicate is identified by its predicate
indicator, i.e. by its name and number of arguments using the notation Name/Arity. When predicates
defined in objects or categories they are also referred to as methods.

predicate alias
An alternative functor (Name/Arity) for a predicate. Predicate aliases can be defined for any inherited
predicate using the alias/2 directive and for predicates listed in uses/2 and use_module/2 directives.
Predicate aliases can be used to solve inheritance conflicts and to improve code clarity by using alter-
native names that are more meaningful in the calling context.

predicate calling context
The object or category from within a predicate is called (either directly or using a control construct
such as a message sending control construct).

predicate declaration
A predicate declaration is composed by a set of predicates directives, which must include ar least a scope
directive.

predicate definition
The set of clauses for a predicate, contained in an object or category. Predicate definitions can be
overriden or specialized in descendant entities.

predicate definition context
The object or category that contains the definition (i.e. clauses) for a predicate.

predicate directive
A directive that specifies a predicate property that affects how predicates are called or compiled.

predicate execution context
The implicit arguments (including sender, self , and this) required for the correct execution of a predi-
cate call.

predicate scope container
The object that inherits a predicate declaration from an imported category or an implemented protocol.

predicate scope directive
A directive that declares a predicate by specifying its visibility as public, protected, or private.

predicate shorthand
A predicate alias that defines a call template, possibly using a different name, with a reduced number of
arguments by hard-coding the value of the omitted arguments in the original call template. Predicate
shorthands can be defined using uses/2 and use_module/2 directives. They can be used to simplify
predicate calls and to ensure consistent call patterns when some of the arguments always use the same
fixed values in the calling context.

528 Chapter 7. Glossary

The Logtalk Handbook, Release v3.61.0

primary predicate declaration
See multifile predicate.

private inheritance
All public and protected predicates are inherited as private predicates. See also public inheritance and
protected inheritance.

private predicate
A predicate that can only be called from the object that contains its scope directive.

profiler
A program that collects data about other program performance.

protected inheritance
All public predicates are inherited as protected. No scope change for protected or private predicates.
See also public inheritance and private inheritance.

protected predicate
A predicate that can only be called from the object containing its scope directive or from an object that
inherits the predicate.

protocol
An entity that contains predicate declarations. A predicate is declared using a scope directive. It may be
further specified by additional predicate directives. Protocols support the separation between interface
and implementation, can be implemented by both objects and categories, and can be extended by other
protocols. A protocol should be functionally-cohesive, specifying a single functionality. Also known as
interface.

prototype
A self-describing object that may extend or be extended by other objects. An object with no instantia-
tion or specialization relations with other objects is always interpreted as a prototype.

public inheritance
All inherited predicates maintain their declared scope. See also protected inheritance and private inher-
itance.

public predicate
A predicate that can be called from any object.

scratch directory
The directory used to save the intermediate Prolog files generated by the compiler when compiling
source files.

self
The object that received the message under processing.

sender
An object that sends a message to other object. When a message is sent from within a category, the
sender is the object importing the category.

settings file
A source file, compiled and loaded automatically by default at Logtalk startup, mainly defining default
values for compiler flags that override the defaults found on the backend Prolog compiler adapter files.

singleton method
A method defined in an instance itself. Singleton methods are supported in Logtalk and can also be
found in other object-oriented programming languages.

source file
A text file defining Logtalk and/or Prolog code. Multiple Logtalk entities may be defined in a single
source file. Plain Prolog code may be intermixed with Logtalk entity definitions. Depending on the

529

The Logtalk Handbook, Release v3.61.0

used backend Prolog compiler, the text encoding may be specified using an encoding/1 directive as the
first term in the first line in the file.

source file directive
A directive that affects how a source file is compiled.

specialization
A class is specialized by defining a new class that inherit its predicates and possibly add new ones.

static binding
Compile time lookup of a predicate declaration and predicate definition when compiling a message send-
ing call (or a super call). Dynamic binding is used whenever static binding is not possible (e.g. due to
the predicate being dynamic or due to lack of enough information at compilation time). Also known
as early binding. See also dynamic binding.

static entity
See entity.

steadfastness
A predicate definition is steadfast when it still generates only correct answers when called with un-
expected arguments (notably, bound output arguments). Typically, a predicate may not be steadfast
when output argument unifications can occur before a cut in a predicate clause body.

subclass
A class that is a specialization, direct or indirectly, of another class. A class may have multiple sub-
classes.

super call
Call of an inherited (or imported) predicate definition. Mainly used when redefining an inherited (or
imported) predicate to call the overridden definition while making additional calls. Super calls preserve
self and may require dynamic binding if the predicate is dynamic.

superclass
A class from which another class is a specialization (directly or indirectly via another class). A class
may have multiple superclasses.

synchronized predicate
A synchronized predicate is protected by a mutex ensuring that, in a multi-threaded application, it can
only be called by a single thread at a time.

template method
See abstract method.

tester file
A source file whose main purpose is to load and a run a set of unit tests.

this
The object that contains the predicate clause under execution. When the predicate clause is contained
in a category, this is a reference to the object importing the category for which the predicate clause is
being executed.

threaded engine
A computing thread running a goal whose solutions can be lazily and concurrently computed and
retrieved. A threaded engine also supports a term queue that allows passing arbitrary terms to the
engine. This queue can be used to pass e.g. data and new goals to the engine.

top-level interpreter shorthand
Aliases for frequently used built-in predicates such as logtalk_load/1 and logtalk_make/1. These short-
hands are not part of the Logtalk language and must only be used at the top-level interpreter.

530 Chapter 7. Glossary

The Logtalk Handbook, Release v3.61.0

visible predicate
A predicate that is within scope, a locally defined predicate, a built-in method, a Logtalk built-in predi-
cate, or a Prolog built-in predicate.

531

The Logtalk Handbook, Release v3.61.0

532 Chapter 7. Glossary

BIBLIOGRAPHY

[Alexiev93] Mutable Object State for Object-Oriented Logic Programming: A Survey Alexiev, V. Technical
Report TR 93-15, Department of Computing Science, University of Alberta, Canada

[Belli_et_al_92] Object-oriented programming in Prolog: rationale and a case study Belli, F., Jack, O., Naish,
L. Technical Report 92/2, Department of Electrical and Electronics Engineering, University of
Paderborn, Germany URL: http://www.cs.mu.oz.au/~lee/papers/oolp/

[Block89] An Extended Frame Language Block, F. P., Chan, N. C. Proceedings OOPLSLA 89(10):151-157,
ACM

[Bobrow_et_al_88] Common Lisp Object System Specification Bobrow, D. G., Michiel, L. G., Gabriel, R. P.,
Keene, S. E., Kiczales, G., Moon, D. A. ACM SIGPLAN Notices(23)

[Bratko90] Prolog Programming for Artificial Intelligence Bratko, I. Addison Wesley, 2º edition, 1990

[Champaux92] A comparative Study of Object-Oriented Analysis Methods Champaux, D., Faure, P. Journal
of Object-Oriented Programming, Vol. 5, N.1, 1992

[Clocksin87] Programming in Prolog Clocksin, W.F., Mellish, C.S. Springer-Verlag, New York, 1987

[Cointe87] Metaclasses are First Class: the ObjVlisp Model Cointe, P. Proceedings OOPLSLA 87(10):156-
167, ACM

[Cordes91] The Literate Programming Paradigm Cordes, D., Brown, M. IEEE Computer, June 1991:52-61

[Covington94] ISO Prolog: A Summary of the Draft Proposed Standard Covington, M. A. URL: ftp://ai.uga.
edu/pub/prolog.standard/

[Cox86] Object-Oriented Programming: An Evolutionary Approach Cox, Brad J. Addison-Wesley Publish-
ing Company, Don Mills, Ontario

[Davison89] Polka: A Parlog Object oriented language Davison, A. Ph.D. Thesis, Imperial College, London,
1989

[Davison92] A survey of logic programming-based object oriented languages Davison, A. Tech Report 92/3,
Dept. of Computer Science, University of Melbourne, Australia URL: http://www.cs.mu.oz.au/
tr_db/mu_92_03.ps.gz

[Davison93] The deductive and object oriented features of BeBOP Davison, A. Tech Report 93/6, Dept. of
Computer Science, University of Melbourne, Australia URL:http://www.cs.mu.oz.au/tr_db/mu_
93_06.ps.gz

[Delzanno97] Logic and Object-Oriented Programming in Linear Logic Delzanno, G. Ph.D. Thesis, University
of Pisa, Italy URL:http://www.mpi-sb.mpg.de/~delzanno/

[Dony90] Exception Handling and Object-Oriented Programming: Towards a Synthesis Dony, C. Proceed-
ings OOPLSLA 90:322-330, ACM

533

http://www.cs.mu.oz.au/~lee/papers/oolp/
ftp://ai.uga.edu/pub/prolog.standard/
ftp://ai.uga.edu/pub/prolog.standard/
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz
http://www.mpi-sb.mpg.de/~delzanno/

The Logtalk Handbook, Release v3.61.0

[Fornarino_et_al_89] An Original Object-Oriented Approach for Relation Management Fornarino, M., Pinna,
A.-M.,Trousse, B. Proceedings of the 4th Portuguese Conference on Artificial Intelligence Lecture
Notes in Artificial Intelligence, Springer-Verlag (390):13-26

[Fromherz93] OL(P): Object Layer for Prolog Fromherz, M. URL: ftp://parcftp.xerox.com/ftp/pub/ol/

[Fukunaga86] An Experience with a Prolog-based Object-Oriented Language Fukunaga, K., Hirose, S. Pro-
ceedings OOPLSLA 86, 21(11):224-231, ACM

[Goldberg83] Smalltalk-80 The language and its implementation Goldberg, A., Robson, D. Addison-Wesley
Series in Computer Science

[Joy_et_al_00] The Java Language Specification, Second Edition Joy, B., Steele, G., Gosling, J., Bracha, G.
Addison-Wesley, 2000

[ISO95] ISO/IEC DIS 13211-1 - Programming Language Prolog Part 1: General Core Joint Technical
Committee ISO/IEC JTC 1 URL: https://www.iso.org/standard/21413.html

[Knuth84] Literate Programming Knuth, D. E. Computer Journal, May 84, 27(2):97-111

[Lieberman86] Using Prototypical Objects to Implement Shared Behaviour in Object Oriented Systems
Lieberman, H. Proceedings OOPLSLA 86:189-214, ACM

[Maes87] Concepts and Experiments in Computational Reflection Maes, P. Proceedings OOPLSLA 87, ACM

[McCabe92] Logic and Objects McCabe, F. G. Prentice Hall Series in Computer Science

[Moon86] Object-Oriented Programming in Flavors Moon, D. Proceedings OOPLSLA 86:1-8, ACM

[Moss94] Prolog++ The Power of Object-Oriented and Logic Programming Moss, C. Addison-Wesley In-
ternational Series in Logic Programming, 1994

[Moura94] Logtalk: Programação Orientada para Objectos em Prolog Moura, P., Costa, E. 2ª Conferência e
Exposição Portuguesa de Tecnologia Orientada por Objectos 3i Consultores, Lisboa

[Moura99] Porting Prolog: Notes on porting a Prolog program to 22 Prolog compilers or the relevance of
the ISO Prolog standard Moura, P. ALP Newsletter, Vol. 12/2, May 1999

[Moura00] Logtalk 2.6 Documentation Moura, P. Technical Report DMI 2000/1 University of Beira Interior,
Portugal

[Razek92] Combining Objects and Relations Razek, G. Comunications of the ACM, 27(12):66-70

[Rumbaugh87] Relations as Semantic Constructs in an Object-Oriented Language Rumbaugh, J. Proceedings
OOPLSLA 87:466-481, ACM

[Rumbaugh88] Controlling Propagation of Operations using Attributes on Relations Rumbaugh, J. Proceed-
ings OOPLSLA 88:285-296, ACM

[Schachte95] Efficient Object-Oriented Programming in Prolog Schachte, P., Saab, G. Logic Programming:
Formal Methods and Pratical Applications Studies in Computer Science and Artificial Intelligence,
11 Elsevier Science B.V. North-Holland, Amsterdam, 1995

[SICStus95] SICStus Prolog Manual SICStus URL: http://www.sics.se/ps/sicstus.html

[Shan_et_al_93] Is Multiple Inheritance Essential to OOP? (Panel) Shan, Y., Cargill, T., Cox, B., Cook, W.,
Loomis, M., Snyder, A. Proceedings OOPLSLA 93:360-363

[Stefik_et_al_86] Integrating Acess-Oriented Programming into a Multiparadigm Environment Stefik, M. J.,
Bobrow, D. G. , Kahn, K. M. IEEE Software, January 1986:10-18

[Stroustrup86] The C++ Programming Language Stroustrup, B. Addison-Wesley Series in Computer Sci-
ence

534 Bibliography

ftp://parcftp.xerox.com/ftp/pub/ol/
https://www.iso.org/standard/21413.html
http://www.sics.se/ps/sicstus.html

The Logtalk Handbook, Release v3.61.0

[Taenzer89] Problems in Object-Oriented Software Reuse Taenzer, D., Ganti, M., Podar, S. Proceedings of
ECOOP 89 British Computer Society Workshop Series, Cambridge University Press

[Tanzer95] Remarks on Object-Oriented Modeling of Associations Tanzer, C. Journal of Object-Oriented
Programming, February 1995, SIGS Publications

[Tanenbaum87] Operating Systems - Design and Implementation Tanenbaum, A. Prentice-Hall Software
Series, 1987

[Welsch89] Reasoning Objects with Dynamic Knowledge Bases Welsch, C., Barth, G. Proceedings of the 4th
Portuguese Conference on Artificial Intelligence(390):257-268 Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, 1989

Bibliography 535

The Logtalk Handbook, Release v3.61.0

536 Bibliography

INDEX

Symbols
!/0

Built-in method, 289
(::)/1

Control construct, 186
(::)/2

Control construct, 185
(^^)/1

Control construct, 189
(\+)/1

Built-in method, 313
(<<)/2

Control construct, 192
{}/1

Control construct, 190
[]/1

Control construct, 187

A
abolish/1

Built-in method, 301
abolish_category/1

Built-in predicate, 241
abolish_events/5

Built-in predicate, 253
abolish_object/1

Built-in predicate, 242
abolish_protocol/1

Built-in predicate, 242
abstract class, 523
abstract method, 523
adapter file, 523
after/3

Built-in method, 334
alias/2

Directive, 215
always_true_or_false_goals

Flag, 108
ancestor, 523
ask_question/5

Built-in method, 350
asserta/1

Built-in method, 303
assertz/1

Built-in method, 304

B
backend Prolog compiler, 523
bagof/3

Built-in method, 328
before/3

Built-in method, 333
begin_of_file, 124
behavioral reflection, 98
black-box view, 98
built_in/0

Directive, 202
built-in method, 523
built-in predicate, 523
Built-in method

!/0, 289
(\+)/1, 313
abolish/1, 301
after/3, 334
ask_question/5, 350
asserta/1, 303
assertz/1, 304
bagof/3, 328
before/3, 333
call//1-N, 336
call/1-N, 310
catch/3, 314
clause/2, 306
coinductive_success_hook/1-2, 344
context/1, 293
current_op/3, 298
current_predicate/1, 298
domain_error/2, 318
eos//0, 337
evaluation_error/1, 324
existence_error/2, 320
expand_goal/2, 342
expand_term/2, 340
fail/0, 291

537

The Logtalk Handbook, Release v3.61.0

false/0, 291
findall/3, 329
findall/4, 330
forall/2, 331
forward/1, 335
goal_expansion/2, 343
ignore/1, 311
instantiation_error/0, 315
message_hook/4, 347
message_prefix_stream/4, 347
message_tokens//2, 346
once/1, 312
parameter/2, 294
permission_error/3, 321
phrase//1, 337
phrase/2, 338
phrase/3, 339
predicate_property/2, 300
print_message/3, 345
print_message_token/4, 349
print_message_tokens/3, 348
question_hook/6, 351
question_prompt_stream/4, 352
repeat/0, 292
representation_error/1, 323
resource_error/1, 325
retract/1, 308
retractall/1, 309
self/1, 295
sender/1, 296
setof/3, 332
syntax_error/1, 326
system_error/0, 327
term_expansion/2, 341
this/1, 297
throw/1, 314
true/0, 290
type_error/2, 317
ununinstantiation_error/1, 316

Built-in predicate
abolish_category/1, 241
abolish_events/5, 253
abolish_object/1, 242
abolish_protocol/1, 242
category_property/2, 234
complements_object/2, 249
conforms_to_protocol/2-3, 247
create_category/4, 236
create_logtalk_flag/3, 287
create_object/4, 238
create_protocol/3, 240
current_category/1, 231
current_event/5, 253
current_logtalk_flag/2, 286

current_object/1, 232
current_protocol/1, 233
define_events/5, 254
extends_category/2-3, 245
extends_object/2-3, 243
extends_protocol/2-3, 244
implements_protocol/2-3, 246
imports_category/2-3, 249
instantiates_class/2-3, 250
logtalk_compile/1, 273
logtalk_compile/2, 274
logtalk_library_path/2, 282
logtalk_linter_hook/7, 289
logtalk_load/1, 275
logtalk_load/2, 277
logtalk_load_context/2, 284
logtalk_make/0, 278
logtalk_make/1, 279
logtalk_make_target_action/1, 281
object_property/2, 234
protocol_property/2, 235
set_logtalk_flag/2, 286
specializes_class/2-3, 251
threaded/1, 255
threaded_call/1-2, 256
threaded_cancel/1, 262
threaded_engine/1, 267
threaded_engine_create/3, 265
threaded_engine_destroy/1, 266
threaded_engine_fetch/1, 272
threaded_engine_next/2, 268
threaded_engine_next_reified/2, 269
threaded_engine_post/2, 271
threaded_engine_self/1, 267
threaded_engine_yield/1, 270
threaded_exit/1-2, 259
threaded_ignore/1, 258
threaded_notify/1, 264
threaded_once/1-2, 257
threaded_peek/1-2, 261
threaded_wait/1, 263

C
call//1-N

Built-in method, 336
call/1-N

Built-in method, 310
catch/3

Built-in method, 314
catchall_catch

Flag, 109
category, 523
category/1-4

Directive, 202

538 Index

The Logtalk Handbook, Release v3.61.0

category_property/2
Built-in predicate, 234

class, 523
clause/2

Built-in method, 306
clean

Flag, 112
closed-world assumption, 523
closure, 524
code_prefix

Flag, 111
coinduction

Flag, 107
coinductive predicate, 524
coinductive/1

Directive, 215
coinductive_success_hook/1-2

Built-in method, 344
complementing category, 524
complements

Flag, 110
complements_object/2

Built-in predicate, 249
component, 524
conditionals

Flag, 109
conforms_to_protocol/2-3

Built-in predicate, 247
context/1

Built-in method, 293
context_switching_calls

Flag, 110
Control construct

(::)/1, 186
(::)/2, 185
(^^)/1, 189
(<<)/2, 192
{}/1, 190
[]/1, 187

create_category/4
Built-in predicate, 236

create_logtalk_flag/3
Built-in predicate, 287

create_object/4
Built-in predicate, 238

create_protocol/3
Built-in predicate, 240

current_category/1
Built-in predicate, 231

current_event/5
Built-in predicate, 253

current_logtalk_flag/2
Built-in predicate, 286

current_object/1

Built-in predicate, 232
current_op/3

Built-in method, 298
current_predicate/1

Built-in method, 298
current_protocol/1

Built-in predicate, 233

D
debug

Flag, 111
define_events/5

Built-in predicate, 254
deprecated

Flag, 108
Directive

alias/2, 215
built_in/0, 202
category/1-4, 202
coinductive/1, 215
discontiguous/1, 216
dynamic/0, 204
dynamic/1, 217
elif/1, 200
else/0, 200
encoding/1, 193
end_category/0, 205
end_object/0, 205
end_protocol/0, 206
endif/0, 201
if/1, 198
include/1, 194
info/1, 206
info/2, 218
initialization/1, 195
meta_non_terminal/1, 220
meta_predicate/1, 219
mode/2, 221
multifile/1, 222
object/1-5, 207
op/3, 196
private/1, 223
protected/1, 224
protocol/1-2, 211
public/1, 225
set_logtalk_flag/2, 197
synchronized/1, 226
threaded/0, 212
use_module/1, 214
use_module/2, 229
uses/1, 212
uses/2, 227

directive, 524
discontiguous predicate, 524

Index 539

The Logtalk Handbook, Release v3.61.0

discontiguous/1
Directive, 216

disjunctions
Flag, 109

doclet file, 524
doclet object, 524
domain_error/2

Built-in method, 318
duplicated_clauses

Flag, 109
duplicated_directives

Flag, 108
dynamic binding, 524
dynamic entity, 524
dynamic predicate, 524
dynamic/0

Directive, 204
dynamic/1

Directive, 217
dynamic_declarations

Flag, 110

E
early binding, 524
elif/1

Directive, 200
else/0

Directive, 200
encapsulation, 524
encoding/1

Directive, 193
encoding_directive

Flag, 107
end_category/0

Directive, 205
end_object/0

Directive, 205
end_of_file, 124
end_protocol/0

Directive, 206
endif/0

Directive, 201
engines

Flag, 107
entity, 524
entity directive, 524
eos//0

Built-in method, 337
evaluation_error/1

Built-in method, 324
event, 524
events

Flag, 110
existence_error/2

Built-in method, 320
expand_goal/2

Built-in method, 342
expand_term/2

Built-in method, 340
expansion workflow, 525
extends_category/2-3

Built-in predicate, 245
extends_object/2-3

Built-in predicate, 243
extends_protocol/2-3

Built-in predicate, 244

F
fail/0

Built-in method, 291
false/0

Built-in method, 291
findall/3

Built-in method, 329
findall/4

Built-in method, 330
Flag

always_true_or_false_goals, 108
catchall_catch, 109
clean, 112
code_prefix, 111
coinduction, 107
complements, 110
conditionals, 109
context_switching_calls, 110
debug, 111
deprecated, 108
disjunctions, 109
duplicated_clauses, 109
duplicated_directives, 108
dynamic_declarations, 110
encoding_directive, 107
engines, 107
events, 110
hook, 112
lambda_variables, 109
missing_directives, 108
modules, 107
naming, 109
optimize, 111
portability, 108
prolog_compatible_version, 107
prolog_compiler, 110
prolog_dialect, 107
prolog_loader, 110
prolog_version, 107
redefined_built_ins, 109
redefined_operators, 109

540 Index

The Logtalk Handbook, Release v3.61.0

relative_to, 111
reload, 111
report, 111
scratch_directory, 111
settings_file, 107
singleton_variables, 109
source_data, 111
steadfastness, 108
suspicious_calls, 109
tabling, 107
tail_recursive, 109
threads, 107
trivial_goal_fails, 108
undefined_predicates, 108
underscore_variables, 109
unicode, 107
unknown_entities, 108
unknown_predicates, 108
version_data, 108

forall/2
Built-in method, 331

forward/1
Built-in method, 335

G
goal_expansion/2

Built-in method, 343
grammar rule, 525
grammar rule non-terminal, 525
grammar rule terminal, 525

H
hook

Flag, 112
hook object, 525
hook predicate, 525
hot patching, 525

I
identity, 525
if/1

Directive, 198
ignore/1

Built-in method, 311
implements_protocol/2-3

Built-in predicate, 246
imports_category/2-3

Built-in predicate, 249
include/1

Directive, 194
info/1

Directive, 206
info/2

Directive, 218

inheritance, 525
initialization/1

Directive, 195
instance, 525
instantiates_class/2-3

Built-in predicate, 250
instantiation, 525
instantiation_error/0

Built-in method, 315
interface, 525

L
lambda expression, 525
lambda free variable, 526
lambda parameter, 526
lambda_variables

Flag, 109
late binding, 526
library, 526
library alias, 526
library notation, 526
loader file, 526
local predicate, 526
logtalk_compile/1

Built-in predicate, 273
logtalk_compile/2

Built-in predicate, 274
logtalk_library_path/2

Built-in predicate, 282
logtalk_linter_hook/7

Built-in predicate, 289
logtalk_load/1

Built-in predicate, 275
logtalk_load/2

Built-in predicate, 277
logtalk_load_context/2

Built-in predicate, 284
logtalk_make/0

Built-in predicate, 278
logtalk_make/1

Built-in predicate, 279
logtalk_make_target_action/1

Built-in predicate, 281

M
message, 526
message lookup, 526
message to self, 526
message_hook/4

Built-in method, 347
message_prefix_stream/4

Built-in method, 347
message_tokens//2

Built-in method, 346

Index 541

The Logtalk Handbook, Release v3.61.0

meta_non_terminal/1
Directive, 220

meta_predicate/1
Directive, 219

meta-argument, 526
meta-interpreter, 526
meta-predicate, 526
meta-variable, 526
metaclass, 527
method, 527
missing_directives

Flag, 108
mode/2

Directive, 221
module, 527
modules

Flag, 107
monitor, 527
multifile predicate, 527
multifile/1

Directive, 222

N
naked meta-variable, 527
naming

Flag, 109

O
object, 527
object database, 527
object/1-5

Directive, 207
object_property/2

Built-in predicate, 234
once/1

Built-in method, 312
op/3

Directive, 196
optimize

Flag, 111

P
parameter, 527
parameter variable, 527
parameter/2

Built-in method, 294
parametric category, 527
parametric entity, 527
parametric object, 527
parametric object proxy, 527
parent, 528
permission_error/3

Built-in method, 321
phrase//1

Built-in method, 337
phrase/2

Built-in method, 338
phrase/3

Built-in method, 339
polymorphism, 528
portability

Flag, 108
predicate, 528
predicate alias, 528
predicate calling context, 528
predicate declaration, 528
predicate definition, 528
predicate definition context, 528
predicate directive, 528
predicate execution context, 528
predicate scope container, 528
predicate scope directive, 528
predicate shorthand, 528
predicate_property/2

Built-in method, 300
primary predicate declaration, 529
print_message/3

Built-in method, 345
print_message_token/4

Built-in method, 349
print_message_tokens/3

Built-in method, 348
private inheritance, 529
private predicate, 529
private/1

Directive, 223
profiler, 529
prolog_compatible_version

Flag, 107
prolog_compiler

Flag, 110
prolog_dialect

Flag, 107
prolog_loader

Flag, 110
prolog_version

Flag, 107
protected inheritance, 529
protected predicate, 529
protected/1

Directive, 224
protocol, 529
protocol/1-2

Directive, 211
protocol_property/2

Built-in predicate, 235
prototype, 529
public inheritance, 529

542 Index

The Logtalk Handbook, Release v3.61.0

public predicate, 529
public/1

Directive, 225

Q
question_hook/6

Built-in method, 351
question_prompt_stream/4

Built-in method, 352

R
redefined_built_ins

Flag, 109
redefined_operators

Flag, 109
reflection, 97
relative_to

Flag, 111
reload

Flag, 111
repeat/0

Built-in method, 292
report

Flag, 111
representation_error/1

Built-in method, 323
resource_error/1

Built-in method, 325
retract/1

Built-in method, 308
retractall/1

Built-in method, 309

S
scratch directory, 529
scratch_directory

Flag, 111
self, 529
self/1

Built-in method, 295
sender, 529
sender/1

Built-in method, 296
set_logtalk_flag/2

Built-in predicate, 286
Directive, 197

setof/3
Built-in method, 332

settings file, 529
settings_file

Flag, 107
singleton method, 529
singleton_variables

Flag, 109

source file, 529
source file directive, 530
source_data

Flag, 111
specialization, 530
specializes_class/2-3

Built-in predicate, 251
static binding, 530
static entity, 530
steadfastness, 530

Flag, 108
structural reflection, 98
subclass, 530
super call, 530
superclass, 530
suspicious_calls

Flag, 109
synchronized predicate, 530
synchronized/1

Directive, 226
syntax_error/1

Built-in method, 326
system_error/0

Built-in method, 327

T
tabling

Flag, 107
tail_recursive

Flag, 109
template method, 530
term_expansion/2

Built-in method, 341
tester file, 530
this, 530
this/1

Built-in method, 297
threaded engine, 530
threaded/0

Directive, 212
threaded/1

Built-in predicate, 255
threaded_call/1-2

Built-in predicate, 256
threaded_cancel/1

Built-in predicate, 262
threaded_engine/1

Built-in predicate, 267
threaded_engine_create/3

Built-in predicate, 265
threaded_engine_destroy/1

Built-in predicate, 266
threaded_engine_fetch/1

Built-in predicate, 272

Index 543

The Logtalk Handbook, Release v3.61.0

threaded_engine_next/2
Built-in predicate, 268

threaded_engine_next_reified/2
Built-in predicate, 269

threaded_engine_post/2
Built-in predicate, 271

threaded_engine_self/1
Built-in predicate, 267

threaded_engine_yield/1
Built-in predicate, 270

threaded_exit/1-2
Built-in predicate, 259

threaded_ignore/1
Built-in predicate, 258

threaded_notify/1
Built-in predicate, 264

threaded_once/1-2
Built-in predicate, 257

threaded_peek/1-2
Built-in predicate, 261

threaded_wait/1
Built-in predicate, 263

threads
Flag, 107

throw/1
Built-in method, 314

top-level interpreter shorthand, 530
transparent-box view, 98
trivial_goal_fails

Flag, 108
true/0

Built-in method, 290
type_error/2

Built-in method, 317

U
undefined_predicates

Flag, 108
underscore_variables

Flag, 109
unicode

Flag, 107
unknown_entities

Flag, 108
unknown_predicates

Flag, 108
ununinstantiation_error/1

Built-in method, 316
use_module/1

Directive, 214
use_module/2

Directive, 229
uses/1

Directive, 212

uses/2
Directive, 227

V
version_data

Flag, 108
visible predicate, 531

544 Index

	User Manual
	Declarative object-oriented programming
	Main features
	Integration of logic and object-oriented programming
	Integration of event-driven and object-oriented programming
	Support for component-based programming
	Support for both prototype and class-based systems
	Support for multiple object hierarchies
	Separation between interface and implementation
	Private, protected and public inheritance
	Private, protected and public object predicates
	Parametric objects
	High level multi-threading programming support
	Smooth learning curve
	Compatibility with most Prolog systems and the ISO standard
	Performance
	Logtalk scope

	Nomenclature
	Prolog nomenclature
	Smalltalk nomenclature
	C++ nomenclature
	Java nomenclature
	Python nomenclature

	Messages
	Operators used in message sending
	Sending a message to an object
	Delegating a message to an object
	Sending a message to self
	Broadcasting
	Calling imported and inherited predicates
	Message sending and event generation
	Sending a message from a module
	Message sending performance

	Objects
	Objects, prototypes, classes, and instances
	Prototypes
	Classes

	Defining a new object
	Parametric objects
	Finding defined objects
	Creating a new object in runtime
	Abolishing an existing object
	Object directives
	Object initialization
	Dynamic objects
	Object documentation
	Loading files into an object
	Declaring object aliases

	Object relationships
	Object properties
	Built-in objects
	The built-in pseudo-object user
	The built-in object logtalk

	Protocols
	Defining a new protocol
	Finding defined protocols
	Creating a new protocol in runtime
	Abolishing an existing protocol
	Protocol directives
	Dynamic protocols
	Protocol documentation
	Loading files into a protocol

	Protocol relationships
	Protocol properties
	Implementing protocols
	Built-in protocols
	The built-in protocol expanding
	The built-in protocol monitoring
	The built-in protocol forwarding

	Categories
	Defining a new category
	Hot patching
	Finding defined categories
	Creating a new category in runtime
	Abolishing an existing category
	Category directives
	Dynamic categories
	Category documentation
	Loading files into a category
	Declaring object aliases

	Category relationships
	Category properties
	Importing categories
	Calling category predicates
	Parametric categories
	Built-in categories
	The built-in category core_messages

	Predicates
	Reserved predicate names
	Declaring predicates
	Scope directives
	Mode directive
	Meta-predicate directive
	Discontiguous directive
	Dynamic directive
	Operator directive
	Uses directive
	Alias directive
	Documenting directive
	Multifile directive
	Coinductive directive
	Synchronized directive

	Defining predicates
	Object predicates
	Category predicates
	Meta-predicates
	Lambda expressions
	Redefining built-in predicates

	Definite clause grammar rules
	Built-in methods
	Logic and control methods
	Execution context methods
	Error handling and throwing methods
	Database methods
	Meta-call methods
	All solutions methods
	Reflection methods
	Definite clause grammar parsing methods and non-terminals

	Predicate properties
	Finding declared predicates
	Calling Prolog predicates
	Calling Prolog built-in predicates
	Calling Prolog non-standard built-in meta-predicates
	Calling Prolog foreign predicates
	Calling Prolog user-defined plain predicates
	Calling Prolog module predicates
	Calling Prolog module meta-predicates

	Defining Prolog multifile predicates
	Asserting and retracting Prolog predicates

	Inheritance
	Protocol inheritance
	Lookup order for prototype hierarchies
	Lookup order for class hierarchies

	Implementation inheritance
	Lookup order for prototype hierarchies
	Lookup order for class hierarchies
	Redefining inherited predicate definitions
	Specializing inherited predicate definitions
	Union of inherited and local predicate definitions
	Selective inheritance of predicate definitions

	Public, protected, and private inheritance
	Multiple inheritance
	Composition versus multiple inheritance

	Event-driven programming
	Definitions
	Event
	Monitor

	Event generation
	Communicating events to monitors
	Performance concerns
	Monitor semantics
	Activation order of monitors
	Event handling
	Defining new events
	Abolishing defined events
	Finding defined events
	Defining event handlers

	Multi-threading programming
	Enabling multi-threading support
	Enabling objects to make multi-threading calls
	Multi-threading built-in predicates
	Proving goals concurrently using threads
	Proving goals asynchronously using threads

	One-way asynchronous calls
	Asynchronous calls and synchronized predicates
	Synchronizing threads through notifications
	Threaded engines
	Multi-threading performance

	Error handling
	Raising Exceptions
	Type-checking
	Expected terms
	Compiler warnings and errors
	Unknown entities
	Singleton variables
	Redefinition of Prolog built-in predicates
	Redefinition of Logtalk built-in predicates
	Redefinition of Logtalk built-in methods
	Misspell calls of local predicates
	Portability warnings
	Deprecated elements
	Missing directives
	Duplicated directives
	Duplicated clauses
	Goals that are always true or false
	Trivial fails
	Suspicious calls
	Lambda variables
	Redefinition of predicates declared in uses/2 or use_module/2 directives
	Other warnings and errors

	Runtime errors
	Logtalk built-in predicates
	Logtalk built-in methods
	Message sending

	Reflection
	Structural reflection
	Transparent-box view
	Black-box view

	Behavioral reflection

	Writing and running applications
	Starting Logtalk
	Running parallel Logtalk processes
	Source files
	Naming conventions
	Source file text encoding

	Multi-pass compiler
	Compiling and loading your applications
	Loader files
	Libraries of source files
	Settings files
	Compiler linter
	Compiler flags
	Read-only flags
	Version flags
	Lint flags
	Optional features compilation flags
	Backend Prolog compiler and loader flags
	Other flags
	User-defined flags

	Reloading source files
	Batch processing
	Optimizing performance
	Portable applications
	Conditional compilation
	Avoiding common errors
	Coding style guidelines

	Printing messages and asking questions
	Printing messages
	Message tokenization
	Meta-messages
	Intercepting messages
	Asking questions
	Intercepting questions

	Term and goal expansion
	Defining expansions
	Expanding grammar rules
	Bypassing expansions
	Hook objects
	Virtual source file terms and loading context
	Default compiler expansion workflow
	User defined expansion workflows
	Using Prolog defined expansions
	Debugging expansions

	Documenting
	Documenting directives
	Entity directives
	Predicate directives
	Documenting predicate exceptions

	Processing and viewing documenting files
	Inline formatting in comments text
	Diagrams

	Debugging
	Compiling source files in debug mode
	Procedure box model
	Defining spy points
	Defining line number and predicate spy points
	Defining context spy points
	Removing all spy points

	Tracing program execution
	Debugging using spy points
	Debugging commands
	Customizing term writing
	Term write depth
	Custom term writing

	Context-switching calls
	Debugging messages
	Meta-messages
	Selective printing of debug messages

	Using the term-expansion mechanism for debugging
	Ports profiling
	Debug and trace events

	Performance
	Source code compilation modes
	Local predicate calls
	Calls to imported or inherited predicates
	Calls to module predicates
	Messages
	Automatic expansion of built-in meta-predicates
	Inlining
	Generated code simplification and optimizations
	Size of the generated code
	Debug mode overhead
	Other considerations

	Installing Logtalk
	Hardware and software requirements
	Computer and operating system
	Prolog compiler

	Logtalk installers
	Source distribution
	Distribution overview
	Adapter files
	Compiler and runtime
	Library
	Examples
	Logtalk source files

	Prolog integration and migration
	Source files with both Prolog code and Logtalk code
	Encapsulating plain Prolog code in objects
	Prolog multifile predicates

	Converting Prolog modules into objects
	Compiling Prolog modules as objects
	Supported module directives
	Unsupported module directives
	Modules using a term-expansion mechanism
	File search paths

	Dealing with proprietary Prolog directives and predicates
	Calling Prolog module predicates
	Loading converted Prolog applications

	Reference Manual
	Grammar
	Entities
	Object definition
	Category definition
	Protocol definition
	Entity relations
	Implemented protocols
	Extended protocols
	Imported categories
	Extended objects
	Extended categories
	Instantiated objects
	Specialized objects
	Complemented objects
	Entity and predicate scope

	Entity identifiers
	Object identifiers
	Category identifiers
	Protocol identifiers
	Module identifiers

	Source file names
	Terms
	Object terms
	Category terms

	Directives
	Source file directives
	Conditional compilation directives
	Object directives
	Category directives
	Protocol directives
	Predicate directives

	Clauses and goals
	Lambda expressions
	Entity properties
	Predicate properties
	Compiler flags

	Control constructs
	Message sending
	(::)/2
	Description
	Modes and number of proofs
	Errors
	Examples

	(::)/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Message delegation
	[]/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Calling imported and inherited predicates
	(^^)/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Calling external predicates
	{}/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Context switching calls
	(<<)/2
	Description
	Modes and number of proofs
	Errors
	Examples

	Directives
	Source file directives
	encoding/1
	Description
	Template and modes
	Examples

	include/1
	Description
	Template and modes
	Examples

	initialization/1
	Description
	Template and modes
	Examples

	op/3
	Description
	Template and modes
	Examples

	set_logtalk_flag/2
	Description
	Template and modes
	Errors
	Examples

	Conditional compilation directives
	if/1
	Description
	Template and modes
	Examples

	elif/1
	Description
	Template and modes
	Examples

	else/0
	Description
	Template and modes
	Examples

	endif/0
	Description
	Template and modes
	Examples

	Entity directives
	built_in/0
	Description
	Template and modes
	Examples

	category/1-4
	Description
	Template and modes
	Examples

	dynamic/0
	Description
	Template and modes
	Examples

	end_category/0
	Description
	Template and modes
	Examples

	end_object/0
	Description
	Template and modes
	Examples

	end_protocol/0
	Description
	Template and modes
	Examples

	info/1
	Description
	Template and modes
	Examples

	object/1-5
	Description
	Template and modes
	Examples

	protocol/1-2
	Description
	Template and modes
	Examples

	threaded/0
	Description
	Template and modes
	Examples

	uses/1
	Description
	Template and modes
	Examples

	use_module/1
	Description
	Template and modes
	Examples

	Predicate directives
	alias/2
	Description
	Template and modes
	Examples

	coinductive/1
	Description
	Template and modes
	Examples

	discontiguous/1
	Description
	Template and modes
	Examples

	dynamic/1
	Description
	Template and modes
	Examples

	info/2
	Description
	Template and modes
	Examples

	meta_predicate/1
	Description
	Template and modes
	Examples

	meta_non_terminal/1
	Description
	Template and modes
	Examples

	mode/2
	Description
	Template and modes
	Examples

	multifile/1
	Description
	Template and modes
	Examples

	private/1
	Description
	Template and modes
	Examples

	protected/1
	Description
	Template and modes
	Examples

	public/1
	Description
	Template and modes
	Examples

	synchronized/1
	Description
	Template and modes
	Examples

	uses/2
	Description
	Template and modes
	Examples

	use_module/2
	Description
	Template and modes
	Examples

	Built-in predicates
	Enumerating objects, categories and protocols
	current_category/1
	Description
	Modes and number of proofs
	Errors
	Examples

	current_object/1
	Description
	Modes and number of proofs
	Errors
	Examples

	current_protocol/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Enumerating objects, categories and protocols properties
	category_property/2
	Description
	Modes and number of proofs
	Errors
	Examples

	object_property/2
	Description
	Modes and number of proofs
	Errors
	Examples

	protocol_property/2
	Description
	Modes and number of proofs
	Errors
	Examples

	Creating new objects, categories and protocols
	create_category/4
	Description
	Modes and number of proofs
	Errors
	Examples

	create_object/4
	Description
	Modes and number of proofs
	Errors
	Examples

	create_protocol/3
	Description
	Modes and number of proofs
	Errors
	Examples

	Abolishing objects, categories and protocols
	abolish_category/1
	Description
	Modes and number of proofs
	Errors
	Examples

	abolish_object/1
	Description
	Modes and number of proofs
	Errors
	Examples

	abolish_protocol/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Objects, categories, and protocols relations
	extends_object/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	extends_protocol/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	extends_category/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	implements_protocol/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	conforms_to_protocol/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	complements_object/2
	Description
	Modes and number of proofs
	Errors
	Examples

	imports_category/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	instantiates_class/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	specializes_class/2-3
	Description
	Modes and number of proofs
	Errors
	Examples

	Event handling
	abolish_events/5
	Description
	Modes and number of proofs
	Errors
	Examples

	current_event/5
	Description
	Modes and number of proofs
	Errors
	Examples

	define_events/5
	Description
	Modes and number of proofs
	Errors
	Examples

	Multi-threading
	threaded/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_call/1-2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_once/1-2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_ignore/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_exit/1-2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_peek/1-2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_cancel/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_wait/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_notify/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Multi-threading engines
	threaded_engine_create/3
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_destroy/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_self/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_next/2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_next_reified/2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_yield/1
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_post/2
	Description
	Modes and number of proofs
	Errors
	Examples

	threaded_engine_fetch/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Compiling and loading source files
	logtalk_compile/1
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_compile/2
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_load/1
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_load/2
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_make/0
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_make/1
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_make_target_action/1
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_library_path/2
	Description
	Modes and number of proofs
	Errors
	Examples

	logtalk_load_context/2
	Description
	Modes and number of proofs
	Errors
	Examples

	Flags
	current_logtalk_flag/2
	Description
	Modes and number of proofs
	Errors
	Examples

	set_logtalk_flag/2
	Description
	Modes and number of proofs
	Errors
	Examples

	create_logtalk_flag/3
	Description
	Modes and number of proofs
	Errors
	Examples

	Linter
	logtalk_linter_hook/7
	Description
	Modes and number of proofs
	Errors
	Examples

	Built-in methods
	Logic and control
	!/0
	Description
	Modes and number of proofs
	Errors
	Examples

	true/0
	Description
	Modes and number of proofs
	Errors
	Examples

	fail/0
	Description
	Modes and number of proofs
	Errors
	Examples

	false/0
	Description
	Modes and number of proofs
	Errors
	Examples

	repeat/0
	Description
	Modes and number of proofs
	Errors
	Examples

	Execution context
	context/1
	Description
	Modes and number of proofs
	Errors
	Examples

	parameter/2
	Description
	Modes and number of proofs
	Errors
	Examples

	self/1
	Description
	Modes and number of proofs
	Errors
	Examples

	sender/1
	Description
	Modes and number of proofs
	Errors
	Examples

	this/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Reflection
	current_op/3
	Description
	Modes and number of proofs
	Errors
	Examples

	current_predicate/1
	Description
	Modes and number of proofs
	Errors
	Examples

	predicate_property/2
	Description
	Modes and number of proofs
	Errors
	Examples

	Database
	abolish/1
	Description
	Modes and number of proofs
	Errors
	Examples

	asserta/1
	Description
	Modes and number of proofs
	Errors
	Examples

	assertz/1
	Description
	Modes and number of proofs
	Errors
	Examples

	clause/2
	Description
	Modes and number of proofs
	Errors
	Examples

	retract/1
	Description
	Modes and number of proofs
	Errors
	Examples

	retractall/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Meta-calls
	call/1-N
	Description
	Modes and number of proofs
	Errors
	Examples

	ignore/1
	Description
	Modes and number of proofs
	Errors
	Examples

	once/1
	Description
	Modes and number of proofs
	Errors
	Examples

	(\+)/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Error handling
	catch/3
	Description
	Modes and number of proofs
	Errors
	Examples

	throw/1
	Description
	Modes and number of proofs
	Errors
	Examples

	instantiation_error/0
	Description
	Modes and number of proofs
	Errors
	Examples

	uninstantiation_error/1
	Description
	Modes and number of proofs
	Errors
	Examples

	type_error/2
	Description
	Modes and number of proofs
	Errors
	Examples

	domain_error/2
	Description
	Modes and number of proofs
	Errors
	Examples

	existence_error/2
	Description
	Modes and number of proofs
	Errors
	Examples

	permission_error/3
	Description
	Modes and number of proofs
	Errors
	Examples

	representation_error/1
	Description
	Modes and number of proofs
	Errors
	Examples

	evaluation_error/1
	Description
	Modes and number of proofs
	Errors
	Examples

	resource_error/1
	Description
	Modes and number of proofs
	Errors
	Examples

	syntax_error/1
	Description
	Modes and number of proofs
	Errors
	Examples

	system_error/0
	Description
	Modes and number of proofs
	Errors
	Examples

	All solutions
	bagof/3
	Description
	Modes and number of proofs
	Errors
	Examples

	findall/3
	Description
	Modes and number of proofs
	Errors
	Examples

	findall/4
	Description
	Modes and number of proofs
	Errors
	Examples

	forall/2
	Description
	Modes and number of proofs
	Errors
	Examples

	setof/3
	Description
	Modes and number of proofs
	Errors
	Examples

	Event handling
	before/3
	Description
	Modes and number of proofs
	Errors
	Examples

	after/3
	Description
	Modes and number of proofs
	Errors
	Examples

	Message forwarding
	forward/1
	Description
	Modes and number of proofs
	Errors
	Examples

	Definite clause grammar rules
	call//1-N
	Description
	Modes and number of proofs
	Errors
	Examples

	eos//0
	Description
	Modes and number of proofs
	Errors
	Examples

	phrase//1
	Description
	Modes and number of proofs
	Errors
	Examples

	phrase/2
	Description
	Modes and number of proofs
	Errors
	Examples

	phrase/3
	Description
	Modes and number of proofs
	Errors
	Examples

	Term and goal expansion
	expand_term/2
	Description
	Modes and number of proofs
	Errors
	Examples

	term_expansion/2
	Description
	Modes and number of proofs
	Errors
	Examples

	expand_goal/2
	Description
	Modes and number of proofs
	Errors
	Examples

	goal_expansion/2
	Description
	Modes and number of proofs
	Errors
	Examples

	Coinduction hooks
	coinductive_success_hook/1-2
	Description
	Modes and number of proofs
	Errors
	Examples

	Message printing
	print_message/3
	Description
	Modes and number of proofs
	Errors
	Examples

	message_tokens//2
	Description
	Modes and number of proofs
	Errors
	Examples

	message_hook/4
	Description
	Modes and number of proofs
	Errors
	Examples

	message_prefix_stream/4
	Description
	Modes and number of proofs
	Errors
	Examples

	print_message_tokens/3
	Description
	Modes and number of proofs
	Errors
	Examples

	print_message_token/4
	Description
	Modes and number of proofs
	Errors
	Examples

	Question asking
	ask_question/5
	Description
	Modes and number of proofs
	Meta-predicate template
	Errors
	Examples

	question_hook/6
	Description
	Modes and number of proofs
	Meta-predicate template
	Errors
	Examples

	question_prompt_stream/4
	Description
	Modes and number of proofs
	Errors
	Examples

	Tutorial
	List predicates
	Defining a list object
	Defining a list protocol
	Summary

	Dynamic object attributes
	Defining a category
	Importing the category
	Summary

	A reflective class-based system
	Defining the base classes
	Summary

	Profiling programs
	Messages as events
	Profilers as monitors
	Summary

	FAQ
	General
	Why are all versions of Logtalk numbered 2.x or 3.x?
	Why do I need a Prolog compiler to use Logtalk?
	Is the Logtalk implementation based on Prolog modules?
	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?
	Can I use constraint-based packages with Logtalk?
	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!
	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?
	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?
	Can I use both classes and prototypes in the same application?
	Can I mix classes and prototypes in the same hierarchy?
	Can I use a protocol or a category with both prototypes and classes?
	What support is provided in Logtalk for defining and using components?
	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!
	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!
	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?
	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?
	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?
	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?
	How about message-sending performance? Does Logtalk use static binding or dynamic binding?
	Which Prolog-dependent factors are most crucial for good Logtalk performance?
	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?
	Can Logtalk be used in commercial applications?
	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

	Developer Tools
	Overview
	Loading the developer tools
	Tools documentation
	Tools common flags
	Tools requirements
	Tool dependencies for full functionality
	Python dependencies (all operating-systems)
	macOS - MacPorts
	macOS - Homebrew
	Ubuntu
	RedHat
	Windows - Chocolatey
	Windows - installers

	asdf
	assertions
	API documentation
	Loading
	Testing
	Adding assertions to your source code
	Automatically adding file and line context information to assertions
	Suppressing assertion calls from source code
	Redirecting assertion failure messages
	Converting assertion failures into errors

	code_metrics
	API documentation
	Loading
	Testing
	Available metrics
	Usage
	Defining new metrics
	Third-party tools
	Applying metrics to Prolog modules
	Applying metrics to plain Prolog code

	dead_code_scanner
	API documentation
	Loading
	Testing
	Usage
	Integration with the make tool
	Caveats
	Scanning Prolog modules
	Scanning plain Prolog files

	debug_messages
	API documentation
	Loading
	Testing
	Usage

	debugger
	API documentation
	Loading
	Testing
	Usage
	Alternative debugger tools
	Known issues

	diagrams
	Requirements
	macOS - MacPorts
	macOS - Homebrew
	Ubuntu
	Windows - Chocolatey
	Installers

	API documentation
	Loading
	Testing
	Supported diagrams
	Graph elements
	Supported graph languages
	Customization
	Linking diagrams
	Creating diagrams for Prolog module applications
	Creating diagrams for plain Prolog files
	Other notes

	doclet
	API documentation
	Loading
	Automating running doclets
	Integration with the make tool

	help
	API documentation
	Loading
	Testing
	Supported operating-systems
	Usage
	Experimental features
	Known issues

	issue_creator
	Requirements
	Loading
	Usage
	Known issues

	lgtdoc
	API documentation
	Loading
	Testing
	Documenting source code
	Generating documentation
	Documentation linter checks

	lgtunit
	Main files
	API documentation
	Loading
	Testing
	Writing and loading tests
	Running unit tests
	Parametric test objects
	Test dialects
	User-defined test dialects
	QuickCheck
	Skipping tests
	Checking test goal results
	Testing local predicates
	Testing non-deterministic predicates
	Testing generators
	Testing input/output predicates
	Suppressing tested predicates output
	Tests with timeout limits
	Setup and cleanup goals
	Test annotations
	Working with test data files
	Flaky tests
	Debugging failed tests
	Code coverage
	Automating running tests
	Utility predicates
	Exporting test results in xUnit XML format
	Exporting test results in the TAP output format
	Generating Allure reports
	Exporting code coverage results in XML format
	Automatically creating bug reports at issue trackers
	Minimizing test results output
	Known issues

	linter
	Main linter checks
	Help on linter warnings
	Extending the linter
	Linting Prolog modules
	Linting plain Prolog files

	make
	API documentation

	packs
	Requirements
	API documentation
	Loading
	Testing
	Usage
	Registries and packs storage
	Virtual environments
	Registry specification
	Registry handling
	Registry development
	Pack specification
	Pack URLs and Single Sign-On
	Multiple pack versions
	Pack dependencies
	Pack portability
	Pack development
	Pack handling
	Pack documentation
	Pinning registries and packs
	Testing packs
	Security considerations
	Best practices
	Installing Prolog packs
	Known issues

	ports_profiler
	API documentation
	Loading
	Testing
	Compiling source files for port profiling
	Generating profiling data
	Printing profiling data reports
	Interpreting profiling data
	Profiling Prolog modules
	Profiling plain Prolog code
	Known issues

	profiler
	Loading
	Testing
	Supported backend Prolog compilers
	Compiling source code for profiling

	tutor
	API documentation
	Loading
	Usage

	wrapper
	API documentation
	Loading
	Workflows
	Customization
	Current limitations

	Libraries
	Overview
	Library documentation
	Loading libraries
	Testing libraries
	Credits
	Other notes

	arbitrary
	API documentation
	Loading
	Testing
	Usage
	Examples
	Known issues

	assignvars
	API documentation
	Loading
	Testing

	base64
	API documentation
	Loading
	Testing
	Encoding
	Decoding

	basic_types
	API documentation
	Loading
	Testing

	coroutining
	API documentation
	Loading
	Testing

	cbor
	Representation
	Encoding
	Decoding
	API documentation
	Loading
	Testing

	core
	API documentation
	Loading
	Testing

	csv
	API documentation
	Loading
	Testing
	Usage

	dates
	API documentation
	Loading

	dependents
	API documentation
	Loading

	dictionaries
	API documentation
	Loading
	Testing
	Usage
	Credits

	dif
	API documentation
	Loading
	Testing

	edcg
	API documentation
	Loading
	Testing
	Usage
	Introduction
	Syntax
	Declaration of Predicates
	Declaration of Accumulators
	Declaration of Passed Arguments
	Additional documentation

	events
	API documentation
	Loading

	expand_library_alias_paths
	API documentation
	Loading
	Usage

	expecteds
	API documentation
	Loading
	Testing
	Usage
	See also

	format
	Portability
	API documentation
	Loading
	Testing

	gensym
	API documentation
	Loading
	Testing
	Usage

	genint
	API documentation
	Loading
	Testing
	Usage

	git
	API documentation
	Loading
	Testing
	Usage

	grammars
	API documentation
	Loading
	Testing
	Usage

	heaps
	API documentation
	Loading
	Testing
	Credits

	hierarchies
	API documentation
	Loading
	Testing

	hook_flows
	API documentation
	Loading
	Testing
	Usage

	hook_objects
	API documentation
	Loading
	Testing
	Usage
	Using the Prolog backend adapter file expansion rules
	Restoring the default compiler expansion workflow
	Preventing applying any (other) user-defined expansion rules
	Expanding grammar rules into clauses independently of the compiler
	Using the expansion rules defined in a Prolog module
	Wrap the contents of a plain Prolog file as an object
	Outputting term-expansion results to a stream
	Printing entity predicate goals before or after calling them
	Suppressing goals

	html
	API documentation
	Loading
	Testing
	Generating a HTML document
	Generating a HTML fragment
	Working with callbacks to generate content
	Working with custom elements

	ids
	API documentation
	Loading
	Testing
	Usage

	intervals
	API documentation
	Loading
	Testing

	java
	API documentation
	Loading
	Testing
	Usage
	Known issues

	json
	API documentation
	Loading
	Testing
	Representation
	Encoding
	Decoding
	Known issues

	logging
	API documentation
	Loading

	loops
	API documentation
	Loading
	Testing
	Usage

	meta
	API documentation
	Loading
	Testing
	Usage

	meta_compiler
	API documentation
	Loading
	Testing
	Usage

	nested_dictionaries
	API documentation
	Loading
	Testing
	Usage
	Curly term representation

	optionals
	API documentation
	Loading
	Testing
	Usage
	See also

	options
	API documentation
	Loading
	Testing
	Usage

	os
	API documentation
	Loading
	Testing
	Known issues

	queues
	API documentation
	Loading
	Testing
	Usage

	random
	API documentation
	Loading
	Testing
	Usage

	reader
	API documentation
	Loading
	Testing

	redis
	API documentation
	Loading
	Testing
	Credits
	Known issues

	sets
	API documentation
	Loading
	Testing
	Usage
	Credits

	statistics
	API documentation
	Loading
	Testing

	term_io
	API documentation
	Loading
	Testing

	timeout
	API documentation
	Loading
	Testing

	types
	API documentation
	Loading
	Testing
	Type-checking
	Defining new types
	Examples

	unicode_data
	Authors
	License
	Website
	Description
	Requirements
	Usage
	Known issues
	Acknowledgements
	Files and API Summary
	unicode_arabic_shaping.pl
	unicode_bidi_mirroring.pl
	unicode_blocks.pl
	unicode_case_folding.pl
	unicode_categories.pl
	unicode_cjk_radicals.pl
	unicode_composition_exclusions.pl
	unicode_core_properties.pl
	unicode_decomposition_type.pl
	unicode_derived_age.pl
	unicode_derived_bidi_class.pl
	unicode_derived_combining_class.pl
	unicode_derived_core_properties.pl
	unicode_derived_decomposition_type.pl
	unicode_derived_east_asian_width.pl
	unicode_derived_joining_group.pl
	unicode_derived_joining_type.pl
	unicode_derived_line_break.pl
	unicode_derived_normalization_props.pl
	unicode_derived_numeric_type.pl
	unicode_derived_numeric_values.pl
	unicode_hangul_syllable_type.pl
	unicode_indic_matra_category.pl
	unicode_indic_syllabic_category.pl
	unicode_jamo.pl
	unicode_name_aliases.pl
	unicode_names.pl
	unicode_prop_list.pl
	unicode_range_scripts.pl
	unicode_script_extensions.pl
	unicode_scripts.pl
	unicode_special_casing.pl
	unicode_unihan_variants.pl
	unicode_version.pl

	union_find
	API documentation
	Loading
	Testing
	Usage

	uuid
	API documentation
	Loading
	Testing
	Generating version 1 UUIDs
	Generating version 4 UUIDs
	Generating the null UUID

	zippers
	API documentation
	Loading
	Testing

	Glossary
	Bibliography
	Index

