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Abstract

This article presents an overview of the bartcs R package, which employs a Bayesian
additive regression trees-based method for selecting confounders. It uses a Dirichlet dis-
tribution as a common variable selection probability prior, updating both the exposure
and outcome models simultaneously while fitting tree priors for each. This data-driven
method determines which variables (i.e., confounders) affect both models by assigning
more posterior weight to them. It supports continuous and binary exposure variables, as
well as continuous outcome variables, and is written in C++ for improved computational
speed. Additionally, it can take advantage of multiple threads for parallel computing if
OpenMP is available on the platform.

Keywords: Bayesian nonparametric, causal inference, high-dimensional confounders, contin-
uous outcome.

1. Introduction

In observational studies, drawing causality always relies on the ignorability assumption (Rosen-1

baum and Rubin 1983) that all confounders are included in the adjustment procedure. A2

confounder or confounding variable is a common cause that simultaneously affects both ex-3

posure and outcome (Figure 1 (a)). Two groups with different exposure levels, distinguished4

by the distribution of the confounding variable, also experience its impact on their respective5

outcome values. Therefore, to estimate the causal relationship between exposure and out-6

come, it is crucial to select this common cause in the data and adjust for it. In many recent7

applications, the number of potential confounders is often enormous, making it difficult to8

select the optimal set of true confounders among them. In this context, the optimal set is a9

confounder set with an appropriate level of uncertainty that reduces bias in estimating the10

final causal effect.11
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The main distinction between confounder selection and the traditional variable selection1

method is that variables that meet the ignorability assumption should be chosen. Several2

criteria need to be met by the selected confounders in order to reduce the bias of estimated3

causal effects. Among them, “disjunctive cause criterion”(VanderWeele 2019) requires that4

the chosen variables be related to exposure and/or outcome. In Figure 1 (a), a confounder set5

X that satisfies the disjunctive cause criterion consists of variables that either affect exposure6

A, affect outcome Y , or simultaneously affect both A and Y . A better condition than this7

is “disjunctive cause criterion without instruments”(VanderWeele 2019), which removes the8

variables related to exposure but not directly associated with outcome. An instrument, or9

instrumental variable, is a variable that influences exposure A but does not affect outcome10

Y . It is known to amplify bias in causal effect estimation when there is an unmeasured con-11

founder (Myers, Rassen, Gagne, Huybrechts, Schneeweiss, Rothman, Joffe, and Glynn 2011).12

In Figure 1 (b), if a certain confounder from X is unmeasured and not adjusted for (i.e., in13

the presence of an unmeasured confounder), conducting adjustment for instrument Z leads14

to additional bias, known as “Z-bias" (Ding, VanderWeele, and Robins 2017). Therefore, the15

best practice is to remove this instrument during the covariate adjustment process. However,16

manually identifying a set of confounders that meet these criteria among a large number of17

potential confounders is challenging.18

Methods based on data and statistical models for performing such confounder selection have19

recently been proposed. One such method is the Bayesian adjustment for confounding (BAC)20

method proposed by Wang, Parmigiani, and Dominici (2012); Lefebvre, Delaney, and McClel-21

land (2014), which connects exposure and outcome models through common variable inclusion22

indicator variables to identify confounders. Wang, Dominici, Parmigiani, and Zigler (2015)23

later modified the BAC method to work with generalized linear outcome models. Wilson and24

Reich (2014) suggested a method based on decision theory with a similar goal, which performs25

well for a variety of sample sizes. In terms of selecting relevant covariates for use in propen-26

sity score, Shortreed and Ertefaie (2017) proposed the outcome-adaptive LASSO method.27

In addition, Häggström (2018) proposed a method for identifying the causal structure and28

estimating the causal effect using a probability graphical model.29

Despite the advantages of the previously mentioned methods, they each have limitations.30

To address these shortcomings, Kim, Tec, and Zigler (2023) proposed a novel Bayesian non-31

parametric model that aims to overcome these limitations. They suggested a new method32

that employs Bayesian additive regression trees (BART; Chipman, George, McCulloch et al.33

(2010)) with a shared prior for the selection probabilities, which links the exposure and34

outcome models. This approach allows for the flexibility and precision of a Bayesian non-35

parametric model, while also identifying and integrating covariates that are related to both36

the exposure and outcome into the final estimator. This paper introduces bartcs, a new R (R37

Core Team 2021) package developed by Yoo (2023) that implements the Bayesian additive38

regression trees method for confounder selection proposed by Kim et al. (2023). The package,39

which is written in C++ and integrated into R via Rcpp for fast computation and easy use,40

can be downloaded from the Comprehensive R Archive Network (CRAN) at https://cran.r-41

project.org/package=bartcs. Certain sections of the code referred to the BART package by42

Sparapani, Spanbauer, and McCulloch (2021) under the GPL license, with modifications. In43

particular, the development of efficient code involved referencing the existing BART package44

algorithm in following aspects: 1) Code related to obtaining residuals in the Bayesian back-45

fitting process; 2) Code dedicated to efficiently searching for variables eligible for splitting46

https://cran.r-project.org/package=bartcs
https://cran.r-project.org/package=bartcs
https://cran.r-project.org/package=bartcs
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Figure 1: Directed Acyclic Graphs (DAGs): (a) the relationship between exposure A and
outcome Y is confounded by covariates X; (b) Adjusting for instrument Z, which affects
exposure A but is unrelated to outcome Y , may introduce additional bias if there is an
unmeasured covariate in X.

when proposing a splitting variable during the tree alteration process; 3) Code for calculating1

the µ parameter value of leaf nodes; 4) Code for obtaining sufficient statistics for all bottom2

nodes.3

In this paper, we provide an overview of the package, including installation instructions, usage4

examples, and a demonstration of its performance on simulated data. We also include a com-5

parison with other existing confounder selection methods. Our aim is to provide researchers6

with a useful tool for identifying relevant confounders in their causal inference studies and to7

enable them to make more accurate causal inferences.8

2. Overview of model
We first express causal estimation within a potential outcome framework (Rubin 1974). For9

each unit i = 1, · · · , N , the potential outcome for the i-th unit is defined as Yi(a), representing10

the potential value of the outcome Yi that could be observed under the binary exposure11

Ai = a ∈ {0, 1}. The target causal estimand is12

∆(1, 0) = E[Yi(1) − Yi(0)],

which represents the average difference between two potential outcomes under two exposure13

levels 0 and 1. In the later section, we will also explain the utilization of the proposed model14

by extending it for cases involving continuous exposure.15

However, unlike randomized trials, the exposure assignment is not randomized in observa-16

tional studies, making it impossible to directly identify either E[Yi(1)] or E[Yi(0)] from ob-17

served data. With no unmeasured confounders Xi, the following strong ignorable treatment18

assignment assumption (Rosenbaum and Rubin 1983) holds19

{Yi(1), Yi(0)} ⊥ Ai|Xi,

and 0 < Pr(Ai = 1|Xi = x) < 1 for all x; i = 1, · · · , N . The first part is also known as the20

unconfoundedness assumption, and the second part is referred to as the positivity or overlap21

assumption, which states that each unit has a non-zero probability of being assigned to each22
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Package Prog. Lang. Description
bacr (Wang et al.
2015)

R Assume (generalized-) linear models (i.e., para-
metric models) for exposure and outcome. Sup-
ports binomial, Poisson, Gaussian exposure and
outcome.

BayesPen (Wilson,
Bondell, and Reich
2015)

R Assume linear models (i.e., parametric models)
for exposure and outcome. Support continuous
outcome.

CovSelHigh (Häg-
gström 2017)

R Confounder selection performed via either
Markov/Bayesian networks (Model-free selec-
tion of confounders).

BART† (Sparapani
et al. 2021)

C++ Incorporate the Dirichlet sparse prior of Linero
(2018) for variable selection in the BART out-
come model. Support various outcome types
(categorical, continuous, binary, survival out-
come).

bcf ‡ (Hahn, Murray,
and Carvalho 2020)

C++ Specify different BART models for confound-
ing adjustment and heterogeneous effect esti-
mation, and regularizing the treatment effect
directly. Support continuous outcome.

bartCause‡ (Hill
2011)

C++ Fit exposure and outcome models using the
BART algorithm, producing estimates of treat-
ment effects. Support continuous and binary
outcome.

bartcs (Yoo 2023) C++ Use BART outcome and exposure models with
the common Dirichlet prior for confounder se-
lection. Support binary and continuous expo-
sure, and continuous outcome.

Table 1: Summary of different confounder selection methods. †Note that this model (BART
with a Dirichlet sprase prior (DART)) does not primarily focus on confounder selection,
but rather variable selection, and this variable selection functionality is enabled by setting
sparse=TRUE in wbart (continuous outcome) pbart/lbart (binary outcome) mbart/mbart2
(categorical outcome) surv.bart (survival outcome) functions from the BART package. ‡
Note that these models lack the ability for both variable selection and confounder selection.

treatment condition. This strong ignorable treatment assignment assumption is sufficient to1

identify the target causal estimand ∆(1, 0) (Rosenbaum and Rubin 1983; Ding and Li 2018;2

Li, Ding, and Mealli 2023). In practice, even if the true treatment assignment mechanism3

satisfies the above conditions, finite observed data may have only one treatment condition4

value for certain combinations of X. In this case, a non-overlap region occurs for that5

X combination, and target causal estimates in such cases inevitably rely on extrapolation6

dependent on the model. When non-overlap is severe, it can amplify bias in the target causal7

estimate. Therefore, recent research interest lies in whether estimates in such regions are8

provided with an appropriate level of uncertainty (Papadogeorgou and Li 2020; Oganisian and9

Roy 2020; Li et al. 2023). Any method based on outcome regression cannot provide accurate10
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estimation in the non-overlapping region. Further discussion on this topic is available in Li1

et al. (2023).2

Another notable aspect of this assumption is that it is untestable. Therefore, it is not possi-3

ble to conduct tests based on the data to determine which confounder X satisfies the above4

assumption. However, confounders X that meet the criteria presented in the introduction5

(disjunctive cause criterion or disjunctive cause criterion without an instrument; (Vander-6

Weele 2019)) can be considered a minimum basis for a “proper” confounder set.7

With this strong ignorable treatment assignment assumption in place, we can represent the8

causal effect by the following equation of the observable quantities:9

∆(1, 0; x) = E[Yi|Ai = 1, Xi = x] − E[Yi|Ai = 0, Xi = x],

and finally identify and estimate the target estimand ∆(1, 0) by averaging over confounders X.10

Thus, the two key tasks in estimating causal effects are identifying the confounders among11

a potentially large set of covariates, and determining the outcome model (i.e., E[Yi|Ai =12

a, Xi = x], a ∈ {0, 1}) with flexibility and precision. The bartcs R package was developed13

to address these challenges by utilizing Bayesian additive regression trees (BART) models for14

confounder selection and causal effect estimation.15

2.1. Overview of BART16

The BART model (Chipman et al. 2010) is an ensemble of decision trees that can be repre-17

sented by the following equation:18

yi =
T∑

t=1
g(Xi; Tt, Mt) + ϵi,

where ϵi follows a normal distribution with mean 0 and variance σ2, and g(Xi; Tt, Mt)19

is a function that maps the tree structure and parameters to the response, for all i =20

1, · · · , N . For each of T distinct trees, Tt represents the structure of the t-th tree and21

Mt = {µt,1, µt,2, · · · , µt,nt} represents its mean parameters at the terminal nodes. Each22

tree has internal nodes that are split based on a “splitting variable” Xj and “splitting value”23

c (Figure 2).24

In the Markov Chain Monte Carlo (MCMC) update, Bayesian backfitting(Hastie, Tibshirani25

et al. 2000) is utilized within a Metropolis-within-Gibbs sampler. This involves fitting each26

tree in the ensemble sequentially, using the residual responses: R−t := y−
∑

j ̸=t g(X; Tj , Mj)27

where R−t denotes unexplained outcome residuals for the t-th tree. In each iteration of the28

MCMC update, a new tree structure is proposed by randomly selecting one of three possible29

tree alterations:30

GROW: Choose a terminal node at random, and create two new terminal nodes. This31

process involves randomly selecting a predictor, Xj , and its associated “splitting value,”32

c, to create the two new terminal nodes.33

PRUNE: Pick an internal node at random where both children are terminal nodes34

(known as a “singly internal node” (Kapelner and Bleich 2016)) and remove both of its35

children (thus making it a terminal node).36
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Figure 2: The tree structures consist of T trees, each with nodes represented by circles.
Terminal nodes, shown in blue, have µ values. The outcome estimate Ŷ of each observation is
calculated by adding up the µ values of the terminal nodes where the observation falls within
each tree. The method used to split each internal node into two different children nodes is
the “splitting rule,” which consists of a “splitting variable” (i.e., Xj) and a “splitting value”
(i.e., c).

CHANGE: Select an internal node at random and modify its splitting variable and value1

according to the priors.2

Specifically, when using the grow and change alterations, a new covariate is randomly selected3

from a set of P available covariates as the splitting variable, according to the assumed prior.4

The original BART model used a uniform prior of {1/P, 1/P, · · · , 1/P} on the selection prob-5

abilities s = (s1, s2, · · · , sP ). However, to promote sparsity, Linero (2018) proposed using a6

Dirichlet prior (s1, s2, · · · , sP ) ∼ D(α/P, · · · , α/P ). This prior specification, as outlined in7

Table 1, enables the variable selection functionality of the BART package. Through this, it8

can be utilized as a Bayesian variable selection method to choose important predictors in re-9

gression problems. Kim et al. (2023) have adapted this method for causal inference, proposing10

a way to select confounders. By specifying a common Dirichlet prior on the selection proba-11

bilities of the outcome and exposure models, it allows for the selection of important variables12

(i.e., confounders) in both models. In the following section, we will explain the specific setting13

of this method and the steps involved in computing the posterior distributions.14

2.2. BART confounder selection15

The bartcs package in R is designed for selecting confounding variables, particularly when a16

large number of potential confounding variables are present, and for estimating the average17

treatment effect (ATE) given the chosen set of confounding variables. To accomplish this, the18

package uses the Bayesian additive regression trees (BART) model to specify the exposure19
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Figure 3: A shared sparsity-inducing prior for the selection probability vector connects the
exposure model and outcome model, enabling the selection of the splitting variables in both
models. The selection probability vector is updated based on the number of splitting variables
used to describe each tree.

and outcome models as follows:1

P (Ai = 1) = Φ
(

T∑
t=1

ga(Xi; Tt, Mt)
)

(1)

Separate Outcome Models : Yi =
T∑

t=1
ga

y(Xi; T a
t , Ma

t ) + ϵa
i , ϵa

i ∼ N(0, σ2
a) (2)

Single Outcome Model : Yi =
T∑

t=1
gy(Ai, Xi; T ′

t , M′
t) + ϵi, ϵi ∼ N(0, σ2),(3)

for i = 1, · · · , N in Equations 1 and 3, and for i ∈ Ia where Ia denotes a set of units2

under each exposure arm a ∈ {0, 1} in Equation 2. In Equation 1, Φ(·) is the standard3

normal cumulative distribution function. Note that it is required to replace Equation 1 with4

Ai = ∑T
t=1 ga(Xi; Tt, Mt) + ϵi, ϵi ∼ N(0, τ2) when considering a continuous exposure (in5

Section 5). We incorporate a common sparsity-inducing Dirichlet prior (s1, s2, · · · , sP ) ∼6

D(α/P, · · · , α/P ) in the exposure model (Equation 1) and the outcome model (Equation 2)7

resulting in a conjugate update (Figure 3).8

If a particular covariate, Xj , is frequently used as a splitting variable in either the model9

for A or the model for Y , the model will assign more weight to the selection probability sj10

through larger numbers of splits on Xj . This means that the selection probabilities will tend11

to favor covariates that have a relationship with A, Y , or both A and Y . The final confounders12

chosen for effect estimation in the model for Y will be those that were proposed for splitting13

through this prior and were accepted during the updating step of the model for Y , which will14

further prioritize variables that have a relationship with Y . This characteristic satisfies the15

“disjunctive cause criterion without instruments” in confounder selection.16

Separate outcome models17

For a binary exposure, we separate the outcome model into two distinct sub-models, in order18

to align the dimensions of the covariates in both the exposure and outcome models (note that19

the outcome model includes exposure A as an additional covariate if a single outcome model is20
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Algorithm 1 Posterior Computation (Separate Outcome Models)
Require: Samples from the previous iteration (Tt, T 1

t , T 0
t , Mt, M1

t , M0
t ) for t = 1, . . . , T and

(σ2
1, σ2

0), and data (yi, Ai, Xi) for i = 1, · · · , N
1: for r = 1, . . . , M iteration do
2: for i = 1, . . . , N do

3: Zi ∼

 N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi>0) for Ai = 1;
N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi≤0) for Ai = 0
▷ latent exposure

variable
4: end for
5: for j = 1, . . . , T do
6: for i = 1, . . . , N do
7: R

(r)
i,−j = Zi −

∑
t̸=j ga(Xi; Tt, Mt) ▷ residual of the exposure model

8: H
1,(r)
i,−j = yi −

∑
t̸=j g1

y(Xi; T 1
t , M1

t ) ▷ residual of the outcome model for i ∈ I1

9: H
0,(r)
i,−j = yi −

∑
t̸=j g0

y(Xi; T 0
t , M0

t ) ▷ residual of the outcome model for i ∈ I0
10: end for
11: T (r)

j ∼ [Tj |R(r)
1,−j , · · · , R

(r)
N,−j , 1] ▷ based on one of the three acceptance ratios

12: T 1,(r)
j ∼ [T 1

j |H1,(r)
·,−j , σ2

1] ▷ based on one of the three acceptance ratios
13: T 0,(r)

j ∼ [T 0
j |H0,(r)

·,−j , σ2
0] ▷ based on one of the three acceptance ratios

14: M(r)
j ∼ [Mj |T (r)

j , R
(r)
1,−j , · · · , R

(r)
N,−j , 1]

15: M1,(r)
j ∼ [M1

j |T 1,(r)
j , H

1,(r)
·,−j , σ2

1]
16: M0,(r)

j ∼ [M0
j |T 0,(r)

j , H
0,(r)
·,−j , σ2

0]
where, for each a ∈ {0, 1}, H

a,(r)
·,−j denotes {H

a,(r)
i,−j |i ∈ Ia}

17: end for
18:

σ2
1 ∼ Inv.Gamma

aσ + |I1|
2 , bσ + 1

2

∑
i∈I1

(
yi −

T∑
t=1

g1
y(Xi; T 1

t , M1
t )
)


σ2

0 ∼ Inv.Gamma

aσ + |I0|
2 , bσ + 1

2

∑
i∈I0

(
yi −

T∑
t=1

g0
y(Xi; T 0

t , M0
t )
)


19: Update s(r) via the Gibbs algorithm:

s(r) ∼ D
(
na

1 + ny1
1 + ny0

1 + α/P, · · · , na
P + ny1

P + ny0
p + α/P

)
20: end for
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Algorithm 2 Posterior Computation (Single Outcome Model)
Require: Samples from the previous iteration (Tt, T ′

t , Mt, M′
t) for t = 1, . . . , T and (σ2, s),

and data (yi, Ai, Xi) for i = 1, · · · , N
1: for r = 1, . . . , M iteration do
2: for i = 1, . . . , N do

3: Zi ∼

 N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi>0) for Ai = 1;
N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi≤0) for Ai = 0
▷ latent exposure

variable
4: end for
5: for j = 1, . . . , T do
6: for i = 1, . . . , N do
7: R

(r)
i,−j = Zi −

∑
t̸=j ga(Xi; Tt, Mt) ▷ residual of the exposure model

8: H
(r)
i,−j = yi −

∑
t̸=j gy(Xi; T ′

t , M′
t) ▷ residual of the outcome model

9: end for
10: T (r)

j ∼ [Tj |R(r)
1,−j , · · · , R

(r)
N,−j , 1] ▷ based on one of the three acceptance ratios

11: T ′,(r)
j ∼ [T ′

j |H(r)
1,−j , · · · , H

(r)
N,−j , σ2] ▷ based on one of the three acceptance ratios

12: M(r)
j ∼ [Mj |T (r)

j , R
(r)
1,−j , · · · , R

(r)
N,−j , 1]

13: M′,(r)
j ∼ [M′

j |T ′,(r)
j , H

(r)
1,−j , · · · , H

(r)
N,−j , σ2]

14: end for
15:

(σ2)(r) ∼ Inv.Gamma
(

aσ + N

2 , bσ + 1
2

{
N∑

i=1

(
yi −

T∑
t=1

gy(Xi; T ′,(r)
t , M′,(r)

t )
)})

16: Update s(r) based on the M-H algorithm:
17:

Proposal: s(r) ∼ D (ny
0 + c + α/P, na

1 + ny
1 + α/P, · · · , na

P + ny
P + α/P )

18:

Acceptance Ratio: PAR(s → s(r)) = min

1,

 1 −
∑P

j=1 sj

1 −
∑P

j=1 s
(r)
j


∑J

j=1 ny
j


19: end for
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specified). For Equations 1 and 2, a sparsity-inducing prior is applied to (s1, s2, · · · , sP ), which1

is shared among three models: one for exposure and two for outcomes. The resulting update2

based on this prior is (s1, s2, · · · , sP ) ∼ D(α/P + na
1 + ny1

1 + ny0
1 , · · · , α/P + na

P + ny1
P + ny0

P ),3

where ny1
j and ny0

j represent the numbers of splits on the confounder Xj in two separate4

outcome models, and na
j represents the number of splits on Xj in the exposure model.5

We use “Bayesian backfitting”(Hastie et al. 2000) to obtain posterior samples for the expo-
sure and outcome models. For the exposure model, this involves a Metropolis-within-Gibbs
sampler, where we fit each tree Tt iteratively using residual responses :

Ri,−t = Zi −
∑
j ̸=t

ga(Xi; Tj , Mj)

for i = 1, · · · , N where Zi is a latent variable for the binary exposure constructed with6

Zi ∼

 N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi>0) for Ai = 1;
N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi≤0) for Ai = 0.

Note that the variance parameter (σ2) is assigned a value of 1 as a result of the construction of7

the latent variable. For each tree Tt for the exposure model, we propose a new tree structure8

Tt from the full conditional [Tt|R1,−t, · · · , Rn,−t] (i.e., grow, prune or change alterations), and9

update the parameters within the tree through the full conditional [Mt|Tt, R1,−t, · · · , Rn,−t].10

To draw samples for Mt, we assume a prior µ ∼ N(µµ/T, σ2
µ) on each of the leaf parameters11

Mt = {µ1, µ2, · · · , µtb
}, where tb is the number of terminal nodes in tree Tt. The range12

center of latent variable Zi’s is set as the mean, µµ, and σ2
µ is empirically determined to13

satisfy Tµµ − 2
√

Tσµ = Zmin and Tµµ + 2
√

Tσµ = Zmax where Zmin and Zmax represent the14

minimum and maximum values of Zi’s (Kapelner and Bleich 2016).15

We generate a sample µη from the posterior distribution for the η-th terminal node in tree Tt16

by using the following equation:17

µη ∼ N

 1
1/σ2

µ + nη/σ2

(
µµ/T

σ2
µ

+
∑

i∈Oη
Ri,−t

σ2

)
,

(
1

σ2
µ

+ nη

σ2

)−1
 ,

where Oη and nη correspond to the observation indices and the number of observations,18

respectively, for the η-th terminal node. In our implementation, we set the µµ value to 0,19

and consequently, the bartcs package is constructed to shift the Y and Z variables to have a20

mean value of 0.21

For separate outcome models, we also perform a backfitting step to draw samples from22

P (T a
1 , · · · , T a

T , Ma
1, · · · , Ma

T , σ2
a|D) for each A = a ∈ {0, 1} by computing the residual re-23

sponses iteratively as follows:24

Ha
i,−t = yi −

∑
j ̸=t

ga
y(Xi; T a

j , Ma
j ) for i ∈ Ia,

where Ia represents the set of observations corresponding to A = a ∈ {0, 1}. Afterwards, a25

process is undertaken to update each tree based on [T a
t |Ha

·,−t, σ2
a] and the parameters of its26

corresponding terminal nodes from [Ma
t |T a

t , H·,−t, σ2
a] for each exposure level a ∈ {0, 1}. This27

process is analogous to the one described earlier for the exposure model.28
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For each MCMC iteration, once all the tree structures and corresponding parameters have
been updated, we proceed to update the variance parameter (σ2

a in each outcome model (2))
using the Gibbs sampler. This is achieved by sampling from the inverse gamma distribution
given by:

σ2
a ∼ Inv.Gamma

aσ + |Ia|
2 , bσ + 1

2

∑
i∈Ia

(
yi −

T∑
t=1

ga
y(Xi; T a

t , Ma
t )
)

 ,

where aσ = bσ = 3.1

Next, we update the parameter α in the prior distribution of selection probabilities s ∼2

D(α/P, · · · , α/P ) based on a prior of the form α/(α + P ) ∼ Beta(a0, b0), where a0 = 0.53

and b0 = 1 (Linero 2018). The Metropolis-Hastings algorithm is then used to update the4

parameter. Finally, we update s using a conjugate sampling update as follows: s ∼ D(α/P +5

na
1 + ny1

1 + ny0
1 , · · · , α/P + na

P + ny1
P + ny0

P ), where ny1
j and ny0

j represent the numbers of splits6

on the confounder Xj in two separate outcome models, and na
j represents the number of splits7

on Xj in the exposure model.8

The posterior computation process for the approach employing the separate outcome models9

strategy is outlined in Algorithm 1 through pseudocode.10

Single outcome model11

Using two separate outcome models for two exposure levels, as outlined in Hill (2011) and12

Hahn et al. (2020), can result in biased estimates if there is a lack of common support in13

confounders. While a single outcome model can be a viable alternative, it can be chal-14

lenging to apply a shared sparsity-inducing prior to (s1, s2, · · · , sP ) due to differences in15

covariate dimensions between the exposure and outcome models. Let s = (s0, s1, s2, · · · , sP )16

represent the selection probabilities, with s0 denoting the probability of exposure A used17

in the outcome model. To apply this vector to the exposure model, s is transformed to18

s′ = (s1/(1 − s0), s2/(1 − s0), · · · , sP /(1 − s0)). Then, updating s is based on the following19

equation (likelihood × prior):20

Q =
( 1

1 − s0

)∑P

j=1 na
j

s
ny

0+α/P −1
0 s

ny
1+na

1+α/P −1
1 · · · s

ny
P +na

P +α/P −1
P ,

using the Metropolis-Hastings algorithm. The proposal distribution for s is designed to follow21

the full conditional in the separate outcome model, D(ny
0 + c + α/P, na

1 + ny
1 + α/P, na

2 + ny
2 +22

α/P, · · · , na
P + ny

P + α/P ), and a positive value c is added to prevent proposals for infrequent23

exposure.24

All posterior computation steps are identical to the separate outcome models method, except25

for the difference that there is only one outcome model. Therefore, updates for the trees and26

parameters of the outcome model are based on one [T ′
t |H ·,−t, σ2] and one [M′

t|T ′
t , H ·,−t, σ2]27

for each tree t. Subsequently, sampling for σ2 is carried out based on the following inverse28

gamma distribution:29

σ2 ∼ Inv.Gamma
(

aσ + N

2 , bσ + 1
2

{
N∑

i=1

(
Yi −

T∑
t=1

gy(Xi; T ′
t , M′

t)
)})

,
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where aσ = bσ = 3. The posterior computation process for the approach employing the single1

outcome model strategy is outlined in Algorithm 2 through pseudocode.2

Given the M set of posterior samples for BART parameters, the causal effect estimand ∆(1, 0)3

can be estimated using either the separate model or the single model. For the separate4

outcome model, the estimate is obtained by5

∆̂(1, 0) = 1
N

N∑
i=1

[
1

M

M∑
m=1

{
T∑

t=1
g1,(m)

y (Xi; T 1
t , M1

t ) −
T∑

t=1
g0,(m)

y (Xi; T 0
t , M0

t )
}]

,

where g
a,(m)
y is the m-th posterior samples for A = a ∈ {0, 1}. For the single outcome model,6

the estimate is obtained by7

∆̂(1, 0) = 1
N

N∑
i=1

[
1

M

M∑
m=1

{
T∑

t=1
g(m)

y (1, Xi; Tt, Mt) −
T∑

t=1
g(m)

y (0, Xi; Tt, Mt)
}]

,

where g
(m)
y is the m-th posterior samples.8

3. Simulated example
The bartcs R package makes it easy to implement the confounder selection process described9

in the previous section. It includes two main functions, separate_bart() for the separate10

outcome model and single_bart() for the single outcome model. The package not only11

offers a summary of the estimated causal effects but also includes visualizations of posterior12

inclusion probabilities and convergence.13

bartcs offers multi-threading support through Open Multi-Processing (OpenMP), an API for14

shared memory parallel programming that manages thread creation, management, and syn-15

chronization for efficient data and computation division among different threads. This allows16

bartcs to specify intensive computations as parallel regions, leading to improved computa-17

tional efficiency through parallel computing.18

The package bartcs is available under the general public license (GPL ≥ 3) from the Compre-19

hensive R Archive Network (CRAN) at https://cran.r-project.org/package=bartcs and can20

be installed and loaded into the current R session as follows:21

R> install.packages("bartcs", dependencies=TRUE)
R> library("bartcs")

We will showcase the practical usage of the features in the barcs package using simulated22

examples and the Infant Health and Development Program (IHDP) data.23

As a simple example of the bartcs package, we use a simulated dataset from Scenario 1 in Kim24

et al. (2023) to illustrate its features. The data-generating model incorporates both the non-25

linear propensity score and outcome models, and serves to evaluate the ability to detect 5 true26

confounding variables out of a huge set of possible covariates, along with the precision of the27

model’s estimation. The dataset consists of 300 observations with 100 potential confounders28

(X1 − X100), each generated from a normal distribution with mean 0 and variance 1. Of the29

100 possible confounders, X1 − X5 are true confounders. The outcome model includes the30

five true confounders and two additional predictors, X6 and X7 as follows:31

https://cran.r-project.org/package=bartcs
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P (Ai = 1) = Φ(0.5 + 0.5h1(Xi,1) + 0.5h2(Xi,2) − 0.5|Xi,3 − 1| + 1.5Xi,4Xi,5)
Yi ∼ N(µ(Xi), 0.32)

µ(Xi) = h1(Xi,1) + 1.5h2(Xi,2) − Ai + 2|Xi,3 + 1| + 2Xi,4 + exp(0.5Xi,5)
−0.5Ai|Xi,6| − Ai|Xi,7 + 1|

where h1(x) = (−1)I(x<0) and h2(x) = (−1)I(x≥0) for i = 1, · · · , 300. The data was generated1

with the following code:2

R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for (i in 1:P) {
+ cov[[i]] <- rnorm(N, 0, 1)
+ }
R> X <- do.call(cbind, cov)
R> h1 <- ifelse(X[, 1] < 0, 1, -1)
R> h2 <- ifelse(X[, 2] < 0, -1, 1)
R> prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) +
+ 1.5 * X[, 4] * X[, 5])
R> Trt <- rbinom(N, 1, prob)
R> mu1 <- 1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) +
+ 2 * X[, 4] + exp(0.5 * X[, 5]) -
+ 0.5 * 1 * abs(X[, 6]) - 1 * 1 * abs(X[, 7] + 1)
R> mu0 <- 1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) +
+ 2 * X[, 4] + exp(0.5 * X[, 5]) -
+ 0.5 * 0 * abs(X[, 6]) - 1 * 0 * abs(X[, 7] + 1)
R> Y1 <- rnorm(N, mu1, 0.3)
R> Y0 <- rnorm(N, mu0, 0.3)
R> Y <- Trt * Y1 + (1 - Trt) * Y0

Examining the standardized mean differences (SMD) of the (potential) confounders gener-3

ated through the data generating process above, the following observations can be made.4

The Standardized Mean Differences (SMD) values presented below were computed using the5

tableone R package (Yoshida and Bartel 2022), which can be installed from CRAN.6

R> library("tableone")
R> Xdata <- as.data.frame(cbind(Trt,X))
R> names(Xdata) <- c("Trt", paste0(rep("X", 100),1:100))
R> Table <- CreateTableOne(vars = paste0(rep("X", 12),1:12), strata = "Trt",
+ data = Xdata, test = FALSE)
R> print(Table, smd = TRUE)

Stratified by Trt
0 1 SMD

n 164 136
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X1 (mean (SD)) 0.28 (0.96) -0.39 (0.90) 0.718
X2 (mean (SD)) -0.25 (0.99) 0.24 (0.92) 0.517
X3 (mean (SD)) -0.14 (1.02) 0.03 (0.90) 0.178
X4 (mean (SD)) 0.06 (1.08) -0.07 (1.04) 0.118
X5 (mean (SD)) -0.08 (0.86) 0.01 (1.05) 0.091
X6 (mean (SD)) -0.03 (1.06) 0.15 (0.98) 0.177
X7 (mean (SD)) -0.04 (1.03) 0.01 (0.94) 0.050
X8 (mean (SD)) -0.11 (0.99) 0.20 (1.00) 0.312
X9 (mean (SD)) 0.07 (1.04) 0.05 (1.02) 0.017
X10 (mean (SD)) -0.04 (1.13) -0.13 (0.96) 0.087
X11 (mean (SD)) 0.05 (1.02) -0.12 (0.98) 0.169
X12 (mean (SD)) 0.13 (1.01) -0.23 (0.99) 0.363

When looking at the results for the first 12 X variables, it is noted that for true confounders1

X1 and X2, SMD values greater than 0.1, indicative of inadequate covariate balance between2

the groups, are observed. Similar lack of covariate balance between the groups is also noticed3

for X3 and X4. However, due to randomness, differences between the groups are observed for4

some covariates other than the true confounders. In this simulation scenario, with the partial5

presence of the signal from some covariates other than true confounders, the goal is to assess6

the performance of the model under consideration.7

With a generated data set, we fit the BART confounder selection model (the separate outcome8

model) using separate_bart().9

R> library("bartcs")
R> separate_fit <- separate_bart(
+ Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
+ num_burn_in = 10000, num_thin = 5, num_post_sample = 2000
+ )

The following are the main arguments used in the separate_bart() function call:10

• Y represents a vector of observed outcome values.11

• trt denotes a vector of exposure(treatment) values, which can be either binary or12

continuous depending on the function. Binary treatment values need to be either 0 or13

1.14

• X is a data frame of potential confounders.15

The following are the remaining settings for the fit: 4 MCMC chains (num_chain) with 20016

trees (num_tree) are used. Each MCMC chain runs 20000 iterations, with 10000 burn-in17

iterations (num_burn_in) and a thinning factor of 5 (num_thin). There are other optional18

arguments available for hyper-parameter settings with the following default values:19

• α = 0.95 (alpha) and β = 2 (beta): these govern the probability that a node at depth20

d is nonterminal as follows21

α(1 + d)−β.
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• ν = 3 (nu) and q = 0.95 (q): to set a conjugate prior for the variance σ2 with σ2 ∼1

νλ/χ2
ν , we use the following equation to determine the values P (σ < σ̂) = q, where σ̂2

represents the residual standard deviation obtained from a linear regression of Y on X.3

• PGROW = 0.28, PPRUNE = 0.28, PCHANGE = 0.44 (step_prob = c(0.28, 0.28, 0.44)):4

probabilities of three tree alteration steps.5

• dir_alpha = 5: this is an initial value for hyperparameter α in the sparsity inducing6

Dirichlet prior D(α/P, α/P, · · · , α/P ).7

R> separate_fit

`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
ATE -2.2851546 -2.6022894 -1.9692134
Y1 0.7195622 0.4663024 0.9833689
Y0 3.0047169 2.8116436 3.1946016

The separate_bart() returns a S3 bartcs object. A bartcs object includes the posterior8

means and 95% credible intervals for the sample average treatment effect (ATE), and the9

potential outcomes Y (1) and Y (0). It is important to note that the true values for the ATE,10

E[Y (1)], and E[Y (0)] are −2.55, 0.64, and 3.19 respectively, and the 95% credible intervals11

produced by the separate_bart() function include these values.12

For a more in-depth understanding of the output, the summary() function can be used. It13

provides details regarding the treatment values, tree structure, MCMC chain, and outcomes14

for each of the chains.15

R> summary(separate_fit)

`bartcs` fit by `separate_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
Number of Tree : 200 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 5
Number of Sample : 2000
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Figure 4: Posterior inclusion probability (PIP) plots

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

ATE 1 -2.6070044 -2.3892357 -2.2830389 -2.2800555 -2.1765359 -1.9757766
ATE 2 -2.6013548 -2.4017854 -2.2877997 -2.2877071 -2.1798863 -1.9611401
ATE 3 -2.5961329 -2.3952700 -2.2794876 -2.2793208 -2.1609143 -1.9644475
ATE 4 -2.6090523 -2.4001084 -2.2902924 -2.2923171 -2.1812900 -1.9761443
ATE agg -2.6022894 -2.3965077 -2.2851546 -2.2842764 -2.1748201 -1.9692134
Y1 1 0.4705203 0.6322748 0.7174467 0.7174147 0.8027479 0.9668359
Y1 2 0.4707973 0.6305094 0.7223111 0.7213076 0.8153911 0.9851455
Y1 3 0.4653391 0.6277828 0.7190511 0.7194586 0.8080547 0.9804701
Y1 4 0.4614500 0.6273396 0.7194400 0.7175295 0.8087480 0.9920899
Y1 agg 0.4663024 0.6292846 0.7195622 0.7185828 0.8087121 0.9833689
Y0 1 2.8082437 2.9361088 3.0004857 2.9998629 3.0664869 3.1897135
Y0 2 2.8189069 2.9442181 3.0101107 3.0107896 3.0778268 3.2013420
Y0 3 2.8002284 2.9362280 2.9985387 2.9972708 3.0646989 3.1920314
Y0 4 2.8210957 2.9427012 3.0097324 3.0133450 3.0772579 3.1960383
Y0 agg 2.8116436 2.9404458 3.0047169 3.0053406 3.0713420 3.1946016

For each estimand category, there are five results (rows) that represent the output from each1

of the 4 MCMC chains and an aggregated output.2

For visualization purposes, there are two options available as S3 methods for the bartcs3

object. The first option is the posterior inclusion probability (PIP) plot. PIP is the probability4

that a variable is used as a splitting variable, and can be interpreted as the importance of a5

variable. The inclusion_plot() function is a wrapper for the bar_chart() function from the6

ggcharts package, allowing the use of its arguments to customize the plot. The recommended7

arguments to use are top_n and threshold.8

R> plot(separate_fit, method = "pip", top_n = 10)
R> plot(separate_fit, method = "pip", threshold = 0.5)

In Figure 4, the argument top_n allows us to select variables with the top top_n highest9

PIPs. The argument threshold displays variables with PIP greater than threshold. From a10
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Figure 5: Traceplots for multiple MCMC chains

decision-theoretical perspective (Barbieri and Berger 2004; Linero 2018), variables with PIPs1

larger than 0.5 can be considered chosen confounders. It is worth noting that the five true2

confounders X1 − X5 are all correctly selected as true confounders with PIPs of 1, along with3

one extra predictor X7 in the outcome model.4

The second option for visualization is the traceplot, which is mainly used to check MCMC5

convergence. The function provides a traceplot of the average treatment effect (ATE) for6

each MCMC chain. Traceplots of other parameters such as dir_alpha (the hyperparameter7

α in the sparsity-inducing Dirichlet prior D(α/P, · · · , α/P )) and sigma2_out (the variance8

parameter in the outcome model) are also available by using the argument parameter.9

R> plot(separate_fit, method = 'trace')
R> plot(separate_fit, method = 'trace', parameter = 'dir_alpha')

In Figure 5, the traceplots of the ATE and dir_alpha parameters are shown for four differ-10

ent MCMC chains. Regarding the dir_alpha parameter (α), the actual value used as the11

hyper-parameter for the Dirichlet prior is obtained by dividing the total number of potential12

confounders, denoted as P (i.e., α/P ). Considering the simulation data setting where P = 10013

is used, the hyper-parameter to be estimated is a significantly small value, which is α/100.14

Therefore, compared to the variation observed in the traceplot, the variation of the actual15

α/P can be interpreted as considerably smaller. While visual inspection using traceplots is16

convenient, it is advised to utilize the gelman-rubin diagnostics offered by the gelman.diag()17

function in the coda R package (Plummer, Best, Cowles, Vines, Sarkar, Bates, Almond, and18

Magnusson 2020) for a more thorough evaluation of convergence, as demonstrated in the19

following section.20

We evaluated the performance of bartcs in comparison to other models, including those gen-21

erated by the bacr R package (Wang et al. 2015) that inspired our model development. The22

bacr package is easily installed via CRAN and loaded into the current R session as follows:23

R> install.packages("bacr", dependencies=TRUE)
R> library("bacr")
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To fit the model of this package, we used the bac() function where the input data needs to1

be provided in the form of a data frame. To fit the exposure and outcome models in this2

case, a generalized linear model is used, and it is necessary to specify the family of the model3

based on the data type (e.g.. familyX="binomial" and familyY="gaussian"). The MCMC4

algorithm was run for 10000 iterations after discarding the first 10000 iterations as burn-ins.5

Additionally, no interaction between the exposure and each confounder was assumed.6

R> Z <- as.data.frame(cbind(Y,Trt,X))
R> fit.bac <- bac(
+ data = Z, exposure = "Trt", outcome = "Y",
+ confounders = paste("V", 3:(P + 2), sep = ""),
+ interactors = NULL, familyX = "binomial", familyY = "gaussian",
+ omega = Inf, num_its = 20000, burnM = 10000, burnB = 10000, thin = 5
+ )

The result can be checked through the summary() function as follows:7

R> summary(fit.bac)

BAC objects:

Exposure effect estimate:
posterior mean 95% posterior interval

-1.6 (-2.1, -1.3)

Covariates with posterior inclusion probability > 0.5:
posterior inclusion probability

V3 1.00000
V4 1.00000
V5 1.00000
V6 1.00000
V7 1.00000
V99 0.92100
V14 0.70305
V54 0.67480
V90 0.62345

The posterior mean of the ATE was estimated to be −1.6, which was significantly different8

from the true ATE value of −2.55. Moreover, the 95% credible interval (−2.1, −1.3) did not9

include the true value. When considering the importance of selected confounders based on10

the posterior inclusion probability, bacr included all important confounders X1 − X5 (that is,11

V 3−V 7 in the summary), but also added X12, X52, X88, and X97 (that is, V 14, V 54, V 90, V 9912

in the summary) with high PIPs, which were not true confounders. Notably, X6 and X7,13

which are additional predictors of the outcome model, were not included. This result may be14

attributed to the fact that bacr relies on a parametric model and therefore may struggle to15

account for the non-linear and complex data structure.16
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3.1. Connection to coda package1

To summarize the results, generic functions such as summary() and plot() were adapted to2

work on the bartcs objects. Additionally, mcmc.list objects were included as components3

in the bartcs object to allow for the use of functions from the coda R package (Plummer4

et al. 2020). The mcmc_list component of the bartcs object can produce summary statistics5

for each of E[Y (1)], E[Y (0)], ATE using the summary function and generate trace plots and6

posterior densities for parameters using the plot function. Figure 6 displays plot of mcmc_list7

based on coda package.8

R> summary(separate_fit$mcmc_list)

Iterations = 10005:20000
Thinning interval = 5
Number of chains = 4
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
ATE -2.285155 0.1639173 1.833e-03 2.489e-03
Y1 0.719562 0.1328857 1.486e-03 2.122e-03
Y0 3.004717 0.0977850 1.093e-03 1.790e-03
dir_alpha 1.576421 0.7317213 8.181e-03 6.836e-02
sigma2_out1 0.001731 0.0003359 3.756e-06 5.533e-06
sigma2_out0 0.001310 0.0002334 2.609e-06 3.784e-06

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
ATE -2.6022894 -2.396508 -2.284276 -2.174820 -1.969213
Y1 0.4663024 0.629285 0.718583 0.808712 0.983369
Y0 2.8116436 2.940446 3.005341 3.071342 3.194602
dir_alpha 0.5772667 1.024000 1.423480 2.003651 3.390765
sigma2_out1 0.0011718 0.001490 0.001698 0.001935 0.002483
sigma2_out0 0.0009263 0.001146 0.001289 0.001446 0.001845

R> plot(separate_fit$mcmc_list)

The convergence of the MCMC object can be assessed by utilizing the convergence diagnostics9

offered by the coda package. To examine the convergence of six parameters. we can employ the10

gelman.diag() function on the mcmc.list object, specifically on separate_fit$mcmc_list.11

R> library("coda")
R> gelman.diag(separate_fit$mcmc_list)
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Figure 6: Plot of mcmc_list using the coda R package

Potential scale reduction factors:

Point est. Upper C.I.
ATE 1.00 1.00
Y1 1.00 1.00
Y0 1.00 1.01
dir_alpha 1.02 1.07
sigma2_out1 1.00 1.00
sigma2_out0 1.00 1.00

Multivariate psrf

1.02

Based on the convergence diagnostics, it can be concluded that there are no issues with the1

convergence of the MCMC chain, similar to the visual inspection.2

4. Real data example
In the previous section, the separate_bart() function was used to demonstrate a sepa-3

rate outcome model scheme. In this section, a single outcome model is tested using the4

single_bart() function, based on the Infant Health and Development Program (IHDP)5

dataset as an example. This dataset was collected from a longitudinal study that tracked the6
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development of low-birth-weight premature infants. The study participants in the treatment1

group received intensive care and home visits from trained providers and their cognitive test2

scores were evaluated at the end of the intervention period. The dataset includes a variety of3

pretreatment variables, including 6 continuous and 19 binary covariates. The original IHDP4

data is generated from a randomized experiment setting. However, the IHDP data used by5

Hill (2011) and Louizos, Shalit, Mooij, Sontag, Zemel, and Welling (2017) was manipulated6

to induce covariate imbalance between treatment groups by removing a subset of the treated7

group. Specifically, all children with nonwhite mothers were removed from the treated group.8

We utilize a synthesized variant of the IHDP data as presented in Louizos et al. (2017). This9

version was created employing the NPCI package (Dorie 2016) to ascertain the true counter-10

factual values. As seen in Figure 7, the data generated in this manner significantly violates11

the overlap assumption for estimating the Average Treatment Effect (ATE). This figure de-12

picts the degree of overlap between two groups (Treated vs Control) for selected covariates.13

Red crosses represent the control group, and blue triangles represent the treated group. In14

certain intervals of extreme values for each covariate, there are regions where only control15

group data exists, or very few data points from the treated group are present. For example,16

in the interval where the X5 covariate is less than −4, there is no data from the treated group.17

Non-overlap occurs in these regions. In the case of the binary covariate X18, there is only18

one data point from the treated group at the value of 0. Therefore, technically speaking,19

situations like non-overlap can occur in the estimation process. In such a scenario, one of the20

objectives is to investigate whether a single outcome model can properly estimate the true21

ATE.22

This data can be loaded by23

R> data("ihdp", package = "bartcs")

and Table 2 displays the summary statistics of the variables. In the dataset, y_factual is24

the observed outcome Y (i.e., Y (A)) and y_cfactual is the counterfactual outcome Y (i.e.,25

Y (1 − A)).26

We fit the single outcome model using the single_bart() function.27

R> single_fit <- single_bart(
Y = ihdp$y_factual,
trt = ihdp$treatment,
X = ihdp[, 6:30],
num_tree = 50,
num_chain = 4,
num_post_sample = 2000,
num_thin = 5,
num_burn_in = 10000

)
R> single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
ATE 3.964842 3.747028 4.180764
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Figure 7: A plot illustrating the degree of overlap between two groups (Treated vs Control)
for selected covariates. Red crosses represent the control group, and blue triangles represent
the treated group. In certain intervals for each covariate, there are regions where only control
group data exists, or very few data points from the treated group are present. Non-overlap
occurs in these regions.
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Treatment = 1 (n=139) Treatment = 0 (n=608)
Variable Mean IQR Mean IQR
Y 6.43 (5.83, 7.34) 2.41 (1.45, 3.08)
X⋆

1 0.21 (-0.40, 0.95) -0.05 (-0.75, 0.79)
X⋆

2 0.18 (-0.20, 0.60) -0.04 (-0.60, 0.60)
X⋆

3 -0.04 (-0.73, 0.38) 0.01 (-0.73, 0.76)
X⋆

4 -0.22 (-0.88, 0.16) 0.05 (-0.88, 0.16)
X⋆

5 -0.14 (-0.69, 0.56) 0.03 (-0.50, 0.68)
X⋆

6 0.21 (-0.53, 0.96) -0.05 (-0.86, 0.63)
X7 0.52 (0.00, 1.00) 0.51 (0.00, 1.00)
X8 0.09 (0.00, 0.00) 0.1 (0.00, 0.00)
X9 0.68 (0.00, 1.00) 0.49 (0.00, 1.00)
X10 0.29 (0.00, 1.00) 0.38 (0.00, 1.00)
X11 0.25 (0.00, 0.50) 0.27 (0.00, 1.00)
X12 0.22 (0.00, 0.00) 0.22 (0.00, 0.00)
X13 0.38 (0.00, 1.00) 0.35 (0.00, 1.00)
X14 1.58 (1.00, 2.00) 1.44 (1.00, 2.00)
X15 0.14 (0.00, 0.00) 0.14 (0.00, 0.00)
X16 0.94 (1.00, 1.00) 0.97 (1.00, 1.00)
X17 0.69 (0.00, 1.00) 0.57 (0.00, 1.00)
X18 0.99 (1.00, 1.00) 0.96 (1.00, 1.00)
X19 0.15 (0.00, 0.00) 0.13 (0.00, 0.00)
X20 0.06 (0.00, 0.00) 0.15 (0.00, 0.00)
X21 0.17 (0.00, 0.00) 0.15 (0.00, 0.00)
X22 0.04 (0.00, 0.00) 0.09 (0.00, 0.00)
X23 0.01 (0.00, 0.00) 0.09 (0.00, 0.00)
X24 0.06 (0.00, 0.00) 0.14 (0.00, 0.00)
X25 0.27 (0.00, 1.00) 0.13 (0.00, 0.00)

Table 2: Summary statistics for the IHDP data set. ⋆ denotes a continuous potential con-
founder.

Y1 6.382810 6.188199 6.581852
Y0 2.417969 2.338264 2.496962

The function single_bart() returns a bartcs object, which displays the posterior means and1

95% credible intervals for the average treatment effect (ATE), and the potential outcomes2

Y (1) and Y (0). The summary() and plot() functions can also be used with this bartcs object3

generated by single_bart().4

R> summary(single_fit)

`bartcs` fit by `single_bart()`

Treatment Value
Treated group : 1
Control group : 0
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Tree Parameters
Number of Tree : 50 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 5
Number of Sample : 2000

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

ATE 1 3.758373 3.894465 3.969119 3.968867 4.042380 4.183131
ATE 2 3.744731 3.886575 3.957434 3.956101 4.026455 4.165961
ATE 3 3.760480 3.905973 3.980315 3.980162 4.054086 4.206488
ATE 4 3.730287 3.879606 3.952498 3.953050 4.028315 4.158430
ATE agg 3.747028 3.891543 3.964842 3.965384 4.038288 4.180764
Y1 1 6.196530 6.318675 6.387760 6.387443 6.453303 6.589611
Y1 2 6.181788 6.310026 6.376027 6.376233 6.439727 6.573960
Y1 3 6.196317 6.329945 6.396885 6.397153 6.464297 6.601299
Y1 4 6.169429 6.303404 6.370570 6.371514 6.435679 6.562172
Y1 agg 6.188199 6.314489 6.382810 6.382215 6.449542 6.581852
Y0 1 2.339020 2.391137 2.418640 2.418824 2.446414 2.498677
Y0 2 2.336131 2.392407 2.418593 2.418124 2.446167 2.495229
Y0 3 2.337997 2.388738 2.416570 2.416414 2.444457 2.495583
Y0 4 2.340288 2.389536 2.418073 2.418218 2.446018 2.497264
Y0 agg 2.338264 2.390199 2.417969 2.418042 2.445718 2.496962

We also fitted a separate outcome model to the ihdp data and compared the results from the1

single outcome model.2

R> separate_fit <- separate_bart(
+ Y = ihdp$y_factual,
+ trt = ihdp$treatment,
+ X = ihdp[, 6:30],
+ num_tree = 50,
+ num_chain = 4,
+ num_post_sample = 2000,
+ num_thin = 5,
+ num_burn_in = 10000
+ )
R> separate_fit

`bartcs` fit by `separate_bart()`
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Figure 8: Traceplot of ATE for IHDP dataset

mean 2.5% 97.5%
ATE 3.924013 3.702316 4.148937
Y1 6.342504 6.134043 6.550242
Y0 2.418491 2.340920 2.497081

Similar to the separate outcome model, in single_bart(), the plot() function for the bartcs1

object can also be employed to check the convergence of the MCMC chain. The traceplots2

for the ATE is presented in Figure 8 with the following line.3

R> plot(single_fit, method = 'trace')

As this is a simulated version of the IHDP data, the true values are known and are 4.02 for4

the average treatment effect (ATE), 6.45 for E[Y (1)], and 2.43 for E[Y (0)]. The outputs5

from the two models accurately reflect these true values within their 95% credible intervals.6

Additionally, the PIP plots (Figure 9) depict chosen confounders with PIP values larger than7

0.5.8

The important aspect here is that in the case of the single outcome model, the exposure9

variable (trt) is also incorporated into the selection process. As indicated in Equation 2,10

because the exposure variable is included as one of the covariates in the outcome model, it11

is subject to variable selection. This means that in the computation of PIP, it is treated12

similarly to other confounders, producing the following plot (a) in Figure 9. In Figure 9, plot13

(a) displays the potential confounders for the single outcome model, which have a posterior14

inclusion probability of 0.5 or more, while plot (b) illustrates the confounders with a posterior15

inclusion probability of 0.5 or more when the separate outcome model is used. It is notewor-16

thy that X4, X6, and X15 were consistently chosen as confounders with posterior inclusion17

probability 1.18

4.1. Computation speed19

In Figure 10, the computational speed of two models, the separate and single models, is20

depicted for two different settings of the number of trees (100 vs. 200) based on the scenario in21
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Figure 9: PIP plot for IHDP dataset

Section 3. The speed was assessed using 20000 MCMC iterations across various combinations1

of N and P . We considered three values of N (100, 500, and 1000) and three values of P2

(circle for N × 0.3, triangle for N × 0.5, and cross for N × 1).3

For 100 BART trees, the separate model required 34 to 393 seconds (70 to 761 seconds for4

200 BART trees) for computation, while the single model took 30 to 343 seconds (58 to 6705

seconds for 200 BART trees), depending on the (N, P ) combination. Both models exhibited6

similar computational speeds overall, considering the MCMC iterations. However, the single7

model, which fits two BART models (exposure and one outcome model), was found to be more8

efficient with slightly smaller biases and mean square errors (MSEs) across various scenarios9

(Kim et al. 2023). Therefore, it is recommended to utilize the single model (single_bart()10

function), especially when N is large, due to its faster computational speed.11

Additionally, depending on the number of trees used, a significant improvement in computa-12

tion speed can be observed. It is generally suggested to start with 50 trees as a “good starting13

value,” (Kapelner and Bleich 2016) so using a smaller number of trees is also advised to gain14

computational advantages in terms of speed. Details about the computer used to obtain the15

results are provided in the final computational details section.16

5. Continuous exposure example
When it comes to a continuous exposure variable, the formula in Equation 1 is changed as17

follows:18

Ai =
T∑

t=1
ga(Xi; Tt, Mt) + ϵi, ϵj ∼ N(0, τ2).

This altered formula is used in conjunction with the single outcome model to perform con-19

founder selection. However, the separate outcome model, which fits two distinct outcome20

models based on the two exposure levels, is not suitable for the continuous exposure variable.21

The bartcs has an advantage in handling continuous exposure through its single_bart()22

function. This function has the versatility to handle both binary and continuous treatments,23

and automatically identifies the binary treatment when there are only two unique values. To24

demonstrate this, we generate a data set similar to the previous example.25
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Figure 10: The computation times for both the single outcome model (red) and separate
outcome model (black) based on the number of observations (N) under two different numbers
of trees. A cross symbol (+) represents the scenario where the number of potential confounders
(P ) is equal to the number of observations (N), a triangle (△) represents the scenario where
P = N × 0.5 and a circle (⃝) represents the scenario where P = N × 0.3. These results are
obtained from 20000 MCMC iterations based on the scenario in Section 3.

R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for (i in 1:P) {
+ cov[[i]] <- rnorm(N, 0, 1)
+ }
R> X <- do.call(cbind, cov)
R> h1 <- ifelse(X[, 1] < 0, 1, -1)
R> h2 <- ifelse(X[, 2] < 0, -1, 1)
R> mu_trt <- 0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) + 0.5 * X[, 4] * X[, 5]
R> Trt <- rnorm(N, mu_trt, 0.3)
R> mu_y <- 1 * h1 + 1 * h2 - Trt + 1 * abs(X[, 3] + 1) +
+ 1 * X[, 4] + exp(0.5 * X[, 5]) -
+ 0.5 * Trt * abs(X[, 6]) - 0.5 * Trt * abs(X[, 7] + 1)
R> Y <- rnorm(N, mu_y, 0.3)
R> treatment <- quantile(Trt, 0.75)
R> control <- quantile(Trt, 0.25)

We use the function single_bart() to fit the generated data. The first and third quantile val-1

ues of Trt will serve as the basis for comparing two different exposure levels. As arguments in2

single_bart(), we need to provide these two pre-specified exposure levels (a =trt_treated3

and a′ =trt_control). In the this case, the causal estimand is ∆(a, a′) = E[(Y (a) − Y (a′)].4

R> single_fit <- single_bart(
+ Y = Y, trt = Trt, X = X,
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Figure 11: PIP plot for continuous exposure

+ trt_treated = treatment, trt_control = control,
+ num_tree = 200, num_chain = 4,
+ num_burn_in = 10000, num_thin = 5, num_post_sample = 2000
+ )
R> single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
ATE -2.8097339 -4.2581469 -1.732448
Y1 0.9982417 0.2753606 1.677726
Y0 3.8079756 3.0967180 4.740133

Similar to other bartcs objects, the summary() and plot() functions can be applied to the1

continuous exposure scenario. Figure 11 displays a PIP plot, which demonstrates that out2

of 100 possible confounders, all of the true confounders except X1, X2, and two additional3

predictors were captured effectively, with high PIP values.4

6. Summary and discussion
In conclusion, the bartcs R package is a powerful tool for causal inference using BART. It5

allows users to adjust for confounders and estimate treatment effects using a flexible non-6

parametric method. The package’s ability to handle high-dimensional and non-linear con-7

founding, binary exposure, and continuous exposure makes it a versatile tool for a wide range8

of applications. Additionally, the package’s support for parallel computing and visualization9

of results make it a user-friendly and easy-to-interpret tool. The bartcs package is a valuable10

resource for researchers in various fields.11

In this paper, we assessed the performance of the proposed method in a scenario where all12

true confounders are included in the potential confounder pool, and additional predictors for13

the outcome model are also present within the potential confounder pool. In this scenario,14

the proposed method demonstrated precise Average Treatment Effect (ATE) estimation and15
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accurately identified the true confounders. Moreover, in the study by Kim et al. (2023).1

the proposed method exhibited accurate confounder selection performance and reliable es-2

timation of ATEs even in scenarios involving instrumental variables in the data generating3

process. This success is attributed to the satisfaction of the disjunctive cause criterion without4

instruments by the proposed method, as outlined in the introduction section (VanderWeele5

2019). Additionally, the method demonstrated outstanding results in simulation scenarios6

with diverse effect sizes and varying numbers of true confounders.7

The single outcome model and separate outcome model proposed in this paper both demon-8

strate excellent performance in confounder selection and average treatment effect estimation.9

However, in cases where a continuous treatment variable is required, the single outcome model10

should be applied. Additionally, as indicated in Section 4.1, the single outcome model has a11

slightly faster computation speed than the separate outcome model when the sample size is12

large because it uses one less BART model. On the other hand, the separate outcome model13

has the advantage of relatively faster convergence of the MCMC chain during the process of14

updating the selection probability vector of the BART prior using a simple Gibbs update.15

Therefore, it is necessary to selectively choose between the two models based on the context16

of the data being applied.17

While not currently integrated into the bartcs package, the confounder selection method18

presented here using BART holds potential for extension to various data types. For count19

or categorical outcomes, it might be feasible to substitute the proposed outcome model with20

the log-linear BART model suggested by Murray (2021). Similarly, for survival outcomes, the21

survival BART model proposed by Sparapani, Logan, McCulloch, and Laud (2016) could serve22

as the outcome model. Exploring the specific computation algorithms for these extensions23

could be a fruitful avenue for future research.24

One limitation of the proposed method is its lack of consideration for correlation and tem-25

poral relationships among potential confounders. Currently, no research has explored the26

distribution of weights in the selection probability vector when high correlation exists among27

covariates in the potential confounder pool. An approach worth investigating may involve28

leveraging a causal Directed Acyclic Graph (DAG) to constrain the selection of certain co-29

variates in the prior setting of the selection probability vector. This too presents a promising30

direction for future research.31

Computational details

The results in this paper were obtained using R 4.3.0 on a Mac Studio with a M1 chip32

and 128 GB of memory. bartcs 1.2.0 and bacr 1.0.1 were used for the analysis. R itself33

and all packages used are available from the Comprehensive R Archive Network (CRAN) at34

https://CRAN.R-project.org/.35
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